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Abstract
Smart-home technology has been heralded as an important way to increase energy conserva-
tion, but causal evidence remains scarce. We estimate the causal impact of smart thermostats
on energy use using data from two novel field experiments in which a random subset of treated
households were given a smart thermostat that was installed in their home free of charge. We
combine this experimental data with 18 months of high-frequency data on household energy
consumption in the form of more than 16 million hourly electricity and daily natural gas obser-
vations. In contrast to advertised savings based on engineering models, we find little evidence
that smart thermostats have a statistically or economically significant effect on energy use.
This result is robust to the inclusion of numerous controls and when the model is estimated on
various subsamples of relevance for grid managers and policymakers (e.g., by hour of the day).
We explore potential mechanisms using almost four million observations of system events in-
cluding human interactions with their smart thermostat. Results indicate that user behavior
dampens energy savings and explains the discrepancy between estimates from engineering
models and those observed in our field experiments.
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1 Introduction

Households in America spend an average of over $2,200 on energy annually, and residential energy
accounts for roughly 20% of the annual carbon dioxide pollution from energy production (Energy
Information Administration (EIA), 2018, 2019b).! These high private and social costs have led to
substantial interest in smart technologies that reduce energy use without reducing consumer utility
by increasing efficiency. Given that the largest share of residential energy (almost 40%) goes to
heating and cooling the home (EIA, 2019a), smart thermostats are an increasingly popular example
of such a technology.

Smart thermostats allow individuals to program temperature setpoint schedules and adjust set-
tings remotely via a smart phone application. While producers of these devices promise consumers
substantial savings on their home heating and cooling bills, projected savings are often based on
engineering simulations that fail to account for how people actually use their smart thermostats and
represent an upper bound on potential savings (ecobee, 2013; Honeywell, 2013). Or they are based
on studies that use non-experimental data and have methodological flaws that result in upwardly
biased estimates of savings (Nest, 2019). Thus, the true marginal impact of smart thermostats on
real world energy usage is uncertain.

In order to determine the causal impact that smart thermostats have on home energy usage, we
examine data from two field experiments conducted by Opower and Honeywell in conjunction with
Pacific Gas and Electric (PG&E) — the second largest utility in California. For these experiments,
the 1,385 households that volunteered to participate in the study were randomized into either a
treatment group who received free installation of a Honeywell two-way programmable smart ther-
mostat or a holdout control group that did not receive a smart thermostat.> We evaluate the effect
of the smart thermostat on energy consumption using high-frequency records of household energy
consumption over an 18-month period that includes more than 16 million hourly electricity use
records and almost 700 thousand daily observations of natural gas consumption. We estimate this
effect using a difference-in-differences instrumental variables (DDIV) specification where we use
random assignment to treatment as an instrument for the endogenous decision to install a smart
thermostat.

Across numerous specifications, we find that smart thermostats have neither a statistically nor
economically significant effect on energy use. This result is robust to the inclusion of controls for
weather conditions and a battery of household, location, and time effects. Our midpoint estimate

IFor perspective on total costs, American households consume 20.8 quadrillion British thermal units (BTU) of
energy per year, and energy production results in the emission of over five billion metric tons of carbon dioxide into
the atmosphere each year (EIA, 2019a, 2019b).

%In addition to the ability to schedule permanent temperature setpoints and interact with the thermostat remotely,
the smart thermostat given to households in our experiment provided households with a social norm framing of their
setpoint choices. Framing of setpoints is an increasingly common feature of more modern smart thermostats, and there
is an extensive literature documenting the responsiveness of household energy consumption to social norm framing
(e.g., Allcott, 2011; Ferraro and Price, 2013; Ayres et al., 2012; Costa and Kahn, 2013; Allcott and Rogers, 2014;
Dolan and Metcalfe, 2015). Given this finding and the Peffer et al. (2013) result that individuals do not use the
programmable features of their thermostats as intended, this feature should provide the best chance for the smart
thermostats used in our experiment to cause a reduction in energy consumption.



from the various specifications is -0.001 (se 0.022) for electricity and 0.023 (se 0.026) for natural
gas. We can rule out conservation effects larger than 4.3% for electricity and 2.9% for natural gas
with 95% confidence. Hence, even our most optimistic estimates suggest savings that fall short of
those predicted by engineering models.

To investigate whether this aggregate result masks significant, but offsetting, heterogeneous
effects, we estimate the model across different subsamples such as day of the week, hour of the
day, and ambient temperature/humidity quintiles. We find almost no evidence of heterogeneous
treatment effects.

In order to explore potential mechanisms that would explain this null result, we use almost
four million observations of treatment group heating, ventilation, and air conditioning (HVAC)
system activity and user interactions with their smart thermostat in the form of scheduled tem-
perature setpoints, temporary overrides, and HVAC system events. First, we provide descriptive
evidence that users take advantage of the smart features of their devices. We do so by showing
that they frequently schedule permanent setpoints, the pattern of those setpoints across hours of
the day is intuitive, and the temperatures that they set are in line with Environmental Protection
Administration (EPA) energy-efficiency guidelines. We then establish that users frequently over-
ride scheduled temperature setpoints, and when they do, override settings are less energy efficient
than their previously scheduled counterparts.

Next, to more formally test the hypothesis that user behavior explains the discrepancy between
the decrease in energy use purported by the engineering studies and our experimental estimates,
we categorize smart thermostat households into flexible user type categories based on how in-
tensively they use the energy-saving features of their thermostat.> We match these categories to
our experimental, energy use data, interact user type with an indicator for treatment, and estimate
difference-in-differences intention-to-treat (DDITT) models. Estimates indicate that some high-
efficiency type users do realize significant savings by installing a smart thermostat, but that human
behavior explains the discrepancy between engineering estimates and the null results in the exper-
imental samples. Our findings suggest that engineering models fail to adequately incorporate how
people actually use smart technologies and this limits the usefulness of their estimates in real-world
settings. In doing so, we demonstrate that human behavior is a peril to scaling such technologies
based engineering models.*

Moreover, our sample is comprised of those who expressed interest in a smart thermostat.
While the margins that individuals in our experiments are operating on are very natural (List,
2020), and our samples are externally valid with respect to their base energy use, our null result is
likely to be even stronger if smart thermostats were mandated to homes where people do not desire

3Specifically, we define types based on each household’s relative position in the distributions of permanent setpoints
and temporary overrides (e.g., high (low) types are those above (below) the median number of programmed setpoints).
For both measures, we vary the cutoff between high and low types.

4Our results support the existing literature of large differences between engineering estimates and the the effects
from economic studies with a focus on causality in the field (e.g., Fowlie et al. (2018); Davis et al. (2020)). A difference
between their work and ours is that we observe people’s actual behavior in the home in terms of how they use their
smart thermostat.



such a conservation technology.’

Overall, while null results have usually pose a challenge for economists in terms of their in-
formativeness (Abadie, 2020), we show that people’s interaction with the smart technology is the
reason why we observe the null effect (and the departure from engineering model predictions).
While our findings are "statistical” nulls, they are not "policy" nulls because they are counter to
widely-held prior beliefs based on the engineering literature, and this literature is driving public
policy and expenditure.

We make several contributions to the literature. First, while there has been considerable re-
search on smart grid investments (Joskow, 2012), much less work has been done exploring the
impact of smart technologies on residential energy use. Initial assessments of these technologies
have focused on changes in average energy use induced by in-home displays of real-time energy
price or quantity information (see, e.g., Faruqui and Sergici, 2010; Jessoe and Rapson, 2014; Al-
berini et al., 2013).°

Second, while ours is not the first study to evaluate smart thermostats themselves, the exist-
ing literature is comprised of studies based on either engineering or econometric methodologies,
and both approaches have known issues.” Regarding the former methodology, in their most naive
form, engineering studies compare the energy use of an HVAC system simulated under two dif-
ferent scenarios: a smart thermostat optimally programmed for energy savings and a traditional
thermostat set to maintain a fixed temperature (Urban et al., 2012; Urban and Gomez, 2013; Daken
et al., 2016). Both the experimental and baseline scenarios are unrealistic because of the absence
of human behavior.® As such, these studies estimate the upper bound on true energy savings. Thus,
it is not surprising that device producers often justify their energy-saving claims based on the re-
sults of engineering studies. In contrast, our study is based on a field experiment that captures how
individuals actually use both smart and traditional thermostats and allows us to estimate real-world
savings as opposed to a hypothetical upper-bound.

The existing econometric literature primarily consists of white papers that thermostat producers
use to claim 10-23% energy savings based on a combination of observational and experimental data
(Apex Analytics, LLC, 2014, 2016; Aarish et al., 2015; Ho, 2014; Kelsven et al., 2016; Nest Labs,
2014, 2015; Schellenberg et al., 2017; Stewart and Jackson, 2015; Robinson et al., 2016; Ward et
al., 2014). None have been subjected to peer review and, to varying degrees, all are unclear about
salient features of the study, have methodological flaws (primarily related to selection), and/or
draw incorrect conclusions from their estimates. The selection issues are likely to lead to upwardly
biased estimates of savings, so again, it is not surprising that device manufacturers are eager to
advertise the results of these studies.® These biased studies have likely influenced federal policy

SFor the year 2009, Californians eligible for our thermostats experiment used 1.2 kWh per hour (EIA, 2010). This
number is extremely similar to our sample, which ranges between 1.0 and 1.3.

®Harding and Lamarche (2016) is a notable exception. The authors consider the effect of technologies that automate
temperature setpoint changes to dynamic pricing.

7See Allcott and Greenstone (2012) for a general discussion.

8This methodology is akin to implicitly assuming ideal behavior in the treatment group and no optimizing behavior
in the control group.

9The Nest (2019) website advertises a 10 to 12% savings on heating and a 15% savings on cooling costs based



on smart thermostats.

Exceptions in terms of both clarity and quality are the white papers by Broaddus et al. (2016,
2018) and Park et al. (2017).10 However, in both cases, the observed outcome is based on ag-
gregate energy consumption data: Broaddus et al. (2016, 2018) observe monthly energy billing
data and Park et al. (2017) observe weekly smart meter data. Following Agnew and Goldberg
(2013), both studies include coarse measures to control for ambient weather conditions: counts of
heating and/or cooling degree days. In contrast to the existing econometric literature, we use high-
frequency energy use data to estimate a DDIV model. Ghanem and Smith (2021) formalize the
benefits of using high-frequency hourly data over a more aggregate analog. They show that fixed
effects estimators based on aggregate data are inconsistent when there is high-frequency temporal
heterogeneity in the effects and/or confounders. Accounting for this variation is particularly im-
portant in our context because smart thermostats are designed to allow individuals to vary energy
use in response to within-day changes in temperatures. Thus, in addition to our model specifica-
tion addressing the selection issues that bias much of the existing literature towards findings of
significant savings, our high-frequency data allows us to better control for differences in ambient
weather conditions and more accurately estimate our coefficient of interest than existing studies.'!

Third, our results have important policy implications as there are both government and indus-
try funded subsidies of smart technologies. Between 2009 and 2014, the Department of Energy
(DOE) invested $7.9 billion in smart technologies under the Smart Grid Investment Grant (SGIG)
program (DOE, 2016).!> Additionally, the joint EPA and DOE ENERGY STAR program certi-
fies the energy efficacy of smart thermostats (and other household appliances). Based on these
certifications, 170 utility companies subsidized the purchase of a smart thermostat in 2019 (EPA
2019). In 20 states, over half of all households are eligible for a smart thermostat rebate, and in
the most generous case, all of the residents in Nevada are eligible to receive a smart thermostat for
free (Bloomberg Finance L.P., 2019). Given the current information available, energy producers
and policymakers alike are subsidizing these devices based on misleading information with public

on an internal study. Nest Labs (2015) reports estimates from a difference-in-differences (DD) regression model that
compares the monthly energy use of a self-selected group of households that were early adopters of the Nest smart
thermostat and enrolled in an energy-monitoring program to those who only enrolled in the monitoring program. The
study’s authors acknowledge potential sources of bias in their estimates, but fail to provide evidence that the behavior
of their comparison group is a reasonable counterfactual for those who decide to install a Nest.

10These studies acknowledge self-selection in the treatment group and estimate ITT models on all those encouraged
to install a smart thermostat in their experiment. The latter uses four different methodologies to estimate the effect
of a smart thermostat on energy use, including a small-scale field experiment that uses a matched-pair randomization
design to address selection after randomization. While significant, we note that estimated savings effects in these
studies are generally smaller than in the previously cited studies, on the order of 1% to 6%.

""Novan et al. (Forthcoming) use similar high-frequency smart meter data to reexamine the effect of building codes
on energy use. In contrast to the existing literature (Levinson, 2016; Kotchen, 2017), which analyzes lower-frequency
data, the authors find that residential energy efficiency standards reduce electricity consumption.

12While more than two-thirds of these investments went towards outfitting households with smart meters and com-
munication systems that allow utilities to integrate real-time market conditions into household consumption decisions
via dynamic pricing plans or demand response messaging, a complementary set of investments targeted the develop-
ment and dissemination of technologies such as smart thermostats that allow individuals to remotely communicate
with their appliance and HVAC system.



funds that would be better spent on more effective policy interventions. Our findings highlight
the benefits to policymakers of complementing engineering based approaches to evaluating energy
efficiency programs with carefully designed field experiments to fully understand the impact of the
programs they intend to subsidize.

An additional recommendation for policymakers is that they should attempt to match smart
tech with smart economics. The households in our experiment were part of a standard tiered
energy pricing tariff that millions of Americans currently face. Such tiered pricing has been shown
to be sub-optimal from a welfare point of view (Borenstein, 2012), and so getting energy prices
right will lead to large gains, especially so if consumers can easily optimize their energy use in
the home. Evidence from Blonz et al. (2021) and Jessoe and Rapson (2014) suggests that there
are benefits from combining time-varying prices (time-of-use or dynamic pricing) and smart tech.
Our bottom line is that smart technology will not deliver savings alone, it needs smart pricing as a
complement.

The remainder of this study is organized as follows: In Section 2 we describe the details of
the field experiment, the sample of households in the study, and our data. The following section
formalizes our empirical specification. Section 4 presents our model estimates, and Section 5
explores the mechanisms that drive our findings. The final section concludes.

2 Experimental Design

2.1 Smart Thermostat

The intervention in our field experiments occurs when a given household’s existing thermostat
is replaced by a smart device.'> Smart thermostats are designed to increase consumer utility by
improving the efficiency of the home’s HVAC system and reducing adjustment costs. To these
ends, the device in our experiment has two primary features common to most smart thermostats.
First, the thermostat allows the user to program an extensive schedule of permanent temperature
setpoints for each day of the week. Second, the user can either interact with the device directly
or remotely via a web portal or smartphone app. Both lower the cost of adjusting temperature
settings.!4

While the effect of these features on energy usage is theoretically ambiguous depending the
schedule the user sets and how she interacts with the device, there are several additional features of
the thermostat used in our experiment that are designed to reduce energy consumption compared
to a traditional thermostat. First, our smart thermostat is able to learn about how HVAC system op-
erations affect indoor temperatures, then optimize the transition between programmed temperature
setpoints. Second, when choosing setpoints, users receive messages that compare their settings to

13Specifically, surrogates of Opower/Honeywell installed a Honeywell Z-Wave Touchscreen Thermostat that com-
municates with a website portal and smartphone app designed and hosted by Opower. We do not observe anything
about the pre-existing thermostat.

14 Appendix Section A provides a more detailed description of the device. Panel (a) of Appendix Figure 12 displays
the thermostat and associated applications. Panel (b) shows a screen-shot of scheduling using the smartphone app.



those of similar households. Analogous to the social comparison module studied in Allcott (2011),
the thermostat interface presents: (i) descriptive norms with information on peer setpoint choices
and (ii) injunctive norms with efficiency ratings of setpoints. Third, the thermostat app interface
is designed to facilitate toggling to a less energy intensive setting when the user leaves home and
toggling it back to the previous setting when the user returns. Finally, when a user overrides a
permanent setpoint to make a temporary change that is more energy efficient than the scheduled
one, she is prompted by a query asking if she wants to make this more energy efficient setting
perrnanent.15

Newer smart thermostats may have additional energy saving features.'® While we cannot say
whether our experiment tests the efficacy of all smart thermostats or the combination of features in
the experimental thermostat, we note that the thermostat in our experiment has all the core features
of a current smart thermostat. Additionally, the analysis in Section 5 indicates that individuals
make use of these features and do so largely as intended. Taken together, this suggests that our

results are unlikely to be specific to the particular device installed as part of the experiment.!”

2.2 The Field Experiments

Subjects were recruited in public places (e.g., malls, markets, and festivals) in two waves (or
experiments). Recruitment for the first experiment took place across four counties in Northern
California from July through October of 2012. Subjects in the second experiment were recruited
from December of 2012 to February of 2013 in three Central California counties.'® Appendix
Figure 15 depicts the locations of homes in the experiments and provides visual evidence that
treatment and control groups are spatially balanced across locations. '

Figure 1 illustrates the execution of the field experiments. It describes the assignment of house-
holds to treatment and control groups, as well as the subsequent installation decisions of treatment
households. A total of 1,379 eligible households agreed to participate in our experiments: 815 as

part of the Northern California experiment and 564 in the Central California experiment.?’ They

15 Appendix Figure 13 highlights features of the smart thermostat. Panel (a) illustrates the social norm framing
displayed when households choose setpoints. Panel (b) shows how households can remotely toggle the thermostat in
response to leaving and returning home via a smartphone or personal computer.

oDaken et al. (2016) explain that some smart thermostats use the location of user cell phones to automatically
adjust settings when users are away from home and/or optimize HVAC system settings in response to local weather
conditions.

"To be eligible, an individual had to own her residence and have central air conditioning, a smart phone, and high-
speed Internet. See Appendix Section 1.1 for a summary of the eligibility requirements. For more information on
canvassing, see Appendix Section 1.2 for the original recruitment and enrollment guide.

18Subjects for the experiment in Northern California were recruited from the greater San Francisco/Sacramento area
(Contra Costa, San Joaquin, Solano, and Yolo counties). Households in the Central California experiment are located
in and around Fresno and Bakersfield (Fresno, Kern, and Madera counties).

19We formally test balance in Section 2.6 and fail to reject the null of spatial balance in the counties where house-
holds are located.

20 A1l household counts in this section are based on the households for which we observe electricity consumption.
Aggregating across both experiments, there are a total of 1,379 unique households in the electricity sample, a total
of 1,369 unique households in the natural gas samples, and a total of 1,385 unique households across both energy-



were randomized into either a treatment or control group. After group assignment, the experi-
menter had no further contact with the total of 690 control households across both experiments.
The 689 total households assigned to the treatment groups were offered the smart thermostat de-
scribed in the previous section and installation at no cost.

Professional installation of the smart technology is an important feature of our experiments
over the encouragement or self-installation designs common to other experiments. Peffer et al.
(2011, 2013) provide evidence that programmable thermostats are often installed incorrectly and
list flawed installation as a reason they are not more effective. Additionally, Apex Analytics,
LLC (2016) find that although cheaper, their self-installation design "led to substantial attrition
among interested and qualified customers." In contrast to the 35% take-up rate in their experiment,
on average across our experiments, the smart thermostat was successfully installed in 73% of
treatment group homes. Of the remaining treatment homes, 19% percent declined, and 8% had
complications that prevented installation (e.g., compatibility issues).”!

Figure 1: Sample Randomization

N =815 N =564

Control

Treatment Control Treatment
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Failed Install” Decline Install Failed Install” Decline Install
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(a) Northern CA Experiment (b) Central CA Experiment

2.3 Energy Data

All households in the study were equipped with smart meters that enabled PG&E to record household-
level data on hourly electricity use and daily natural gas consumption. The quantity of electricity
consumed is measured in kilowatt hours (kWh), and the unit of measurement for natural gas is a

type samples. Stated another way, we observe 16 households with electricity consumption data, but not natural gas
information and another six households that consume natural gas, but for which we have no electricity consumption
information.

21 Appendix Figure 14 plots the cumulative density function (CDF) of the difference in time between assignment
and installation dates that illustrates how long it takes households in the treated groups to install the smart thermostat
(conditional on eventual installation of the smart thermostat). Most households had the smart thermostat installed
shortly after being assigned to the treatment group: 50% of households had their thermostat installed within 5 days,
and 95% had it installed within 30 days.



therm (thm).>?> As we cannot observe temperature setpoints directly for control households with a
traditional thermostat, and energy is the policy-relevant good, these measures are the main outcome
variables in our analyses. In total, we observe an average of 11,908 hourly electricity use decisions
for the 1,379 households in electricity sample and 495 natural gas use decisions for the 1,369

households in the natural gas sample over an 18 month period from July 2012 through December
2013.

2.4 Timing

Figure 2 presents two visual depictions of important timing issues associated with the experiments
and data. Panel (a) of Figure 2 plots the flow of households into treatment and control groups
over time. The horizontal axis spans the period of time over which we observe energy data. The
grey shaded areas illustrate the periods of subject recruitment in each of the two experiments.
The subfigure shows that treatment and control households are temporally balanced, as they were
assigned at similar rates over time, and that there is very little attrition over the year and a half
study period.?

Unfortunately, we only observe energy readings starting on the first day of recruitment in
Northern California experiment. Panel (b) illustrates the effect of this issue by plotting the number
of electricity readings per day for each experiment relative to event time (where assignment to
the treatment or control group occurs at time zero).>* The figure shows that we do not observe a
substantial pre-period for all households in the Northern California experiment, but we do for the
Central California experiment. We report estimates in Section 4 both separately by experiment and
based on a sample that combines data from both experiments to account for this issue. Estimates
are not qualitatively different across specifications.

22 A therm is a unit of heat energy equivalent to 100,000 BTUs.

23We formally test balance in Section 2.6 and fail to reject the null of temporal balance in the month of assignment
to experimental group.

24Plotting an analogous graph for natural gas readings changes the scale of the vertical axis but produces the same
overall pattern.



Figure 2: Timing
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2.5 Additional Data
2.5.1 External Data

We supplement the main experimental dataset with information from several external sources and
additional data collected as part of the experiment. First, we compile hourly temperature, humidity,
and heat index readings for each county in the study from the National Oceanic and Atmospheric
Administration (NOAA).?> Appendix Table 3 summarizes the weather data. Temperatures in the
combined sample (Panel C) average 63.7 degrees Fahrenheit (F), but range from below freezing to
well over 100 degrees F. The various Daily Measure statistics for each of the three weather mea-
sures indicate that there is both spatial (between-county) and seasonal (within-county) variation in
the data. The Minimum and Maximum statistics indicate that there is also daily variation in all three
weather variables. Figure 3 visualizes this variation by plotting experiment-specific time series of
the minimum and maximum daily outdoor temperatures over the sample period. The table and
figures indicate that despite our sample being drawn from a temperate part of the country, there
is substantial variation in the weather data. Summers are hot, humid and likely to require the use
of air conditioning to ensure comfortable indoor temperatures. While the rest of the year is more
moderate, there are many days cold enough to necessitate home heating.

2SWe are missing values for 0.09% of the temperature and 0.5% of the humidity observations in the sample. We
interpolate these missing values using the predicted values from separate regressions of the given weather variable on
location, day, and hour fixed effects. We calculate the heat index from the temperature and humidity readings (see:
https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml for the formula).
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Figure 3: Minimum and Maximum Daily Outdoor Temperatures (°F) by Date
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To confirm that this is the case and that we are able to identify the effects of HVAC system use in
our smart meter data, Figure 4 plots the relationship between mean daily energy consumption and
mean daily temperature for homes in the control group.?® The blue markers represent electricity
use (the energy source used for cooling; denoted on the left-hand vertical axis), and the red markers
represent natural gas consumption (the predominate energy source for heating; denoted on the right
vertical axis).?’ As one would expect, electricity use increases, and natural gas use decreases, with
the temperature. Both relationships are non-linear, and the fitted-value lines indicate that quadratic
models predict the data well.

These descriptive analyses indicate that there is sufficient variation in weather conditions in our
sample and energy use responds to that variation, so our experimental setting meets the necessary
conditions for assessing the efficacy of smart thermostats. They also inform our model specifica-
tion. We estimate separate models of the effects of smart thermostats on electricity and natural gas
use. For robustness, we include outdoor temperature and humidity measures, as well as location
and time effects, as controls to mitigate the effects of residual variation on our estimates.

26 Analogous scatter plots based on treated households produce the same patterns. Additionally, Ge and Ho (2019)
analyze high frequency, smart thermostat event log data (similar to the data we analyze in Section 5) and find that the
home heating and cooling decisions of smart thermostat users are affected by weather conditions.

2The area of both markers are weighted by the number of observations in the given cell.
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Figure 4: Average Daily Energy Use by Outdoor Temperature (°F)
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Second, we supplement the household electricity use measure with data from two sources that
allow us to test whether smart thermostats have a differential effect on usage when there is critical
demand load. To do so, we collect data on the average hourly real-time price of electricity from the
California Independent System Operator (CAISO).?® Electricity is produced from many sources
with different production and external costs.”?’ Appendix Figure 16 is a box and whisker plot of
hourly spot prices by quintile that illustrates the variation in these costs in our data. Spot prices are
relatively consistent over the first four quintiles, but increase substantially from the fourth to the
fifth quintile. This is consistent with what we would expect during peak-load times, but the long
whisker in the fifth quintile suggests that peak-demand times may comprise only a small fraction
of the observations in our dataset.

To further identify times when the system is most strained, we also collect data on system-wide
peak-alert messages from CAISO and utility-wide alerts from PG&E. The latter alerts (referred to
as "SmartDays" by the utility) are issued at a finer spatial scale, but a more granular temporal level
(daily) than the latter. In contrast, the CAISO alerts are issued hourly, but apply to a broader area.
Since system-wide alerts may occur on days when it is less obvious that there is a need to reduce
demand to avoid brownouts based on local conditions, we also identify CAISO alerts that were

28The real-time market for electricity in California clears every five minutes. We use this data to calculate the
average spot price each hour.

2 California instituted a cap-and-trade carbon emissions program in 2012 (Shobe et al., 2014), so the price of
electricity on the state’s wholesale market reflects both the marginal cost of production and the prevailing market price
for emissions as reflected in the price of carbon permits.
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broadcast by local media outlets (e.g., the Fresno Bee or the Bakersfield Californian) to ensure
that they reach a reasonable level of publicity to be salient to the households in our experiments.
Conditioning on the additional information from these sources allows us to test whether smart
thermostats reduce demand when the cost of electricity production to society is the greatest.

2.5.2 Internal Data

In addition to the external data we collect, we also observe a high-frequency, exact-time log of
3,967,558 HVAC system events, including user interactions with their smart thermostat, from 372
households. The unbalanced panel dataset spans from July 2012 to January 2013, and Figure 5
illustrates the number of households observed by calendar date. Recruitment and installation of
smart thermostats first began in Northern California in July of 2012, whereas those in Central
California began in December of 2012. Since this dataset is truncated in January of 2013, the
majority of the observations in this dataset are generated by homes from Northern California,
while only about 5% of the observations are from Central California homes.

Figure 5: Number of Households Observed in Events Data by Date
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The system events and user interactions we observe include ambient temperature, HVAC state,
and heating/cooling setpoints (which we classify into permanent setpoints and temporary over-
rides).>® Permanent setpoints are thermostat temperature settings previously scheduled to occur

30Unfortunately, we do not observe who or how many people in the household have access to the app and/or interact
with the thermostat.
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automatically at specific times on a periodic basis. Temporary overrides are changes to the cur-
rent setpoint which result from a concurrent interaction with the thermostat.?! We aggregate these
measures to hour-level observations. Appendix Table 4 summarizes the data. The table shows that
while there are more observations from the Northern California experiment, settings in the two
locations are remarkably similar.3?

Finally, Opower and Honeywell conducted an online survey to collect baseline information
on both treatment and control households in the experiments. We do not use these time-invariant
household characteristics in our main analysis because they are redundant to household fixed ef-
fects, but we use them to test the validity of Opower and Honeywell’s randomization process.

2.6 Balance

To test for balance, we estimate a linear probability model with an indicator for assignment to
treatment as the dependent variable. Appendix Table 5 reports estimates from that model that sum-
marize the results of our balance tests. Column (1) reports estimates based on a sample comprised
of households from both experiments, and the estimates in Columns (2) and (3) are from models
estimated on subsamples by experiment. The significance of each coefficient estimate represents
the results of a single hypothesis test against a null of balance, and the reported F-statistics test the
null hypothesis that all parameters in the given model are jointly equal to zero. We fail to reject the
null for all single and multiple hypothesis tests across all three models. This indicates that control
and treatment households are statistically balanced across observable, pre-experiment measures
and is consistent with an appropriate randomization process.

We note that that households in the treatment group in the Northern California experiment used
5.5% less electricity per hour in the pre-period on average than those in the control. Accounting
for means that are based on less than two weeks of data in Appendix Table 5 indicates that this
difference is driven by the subset of households for which we observe only a limited number of
pre-period electricity observations (see Section 2.4). Regardless, out of an abundance of caution,
we estimate double-difference models to control for any potential pre-period imbalance.

2.7 Time-Trend and Event-Study Analyses

To illustrate basic temporal patterns in the data and the effect of experimental assignment on en-
ergy use Appendix Figure 20 plots the mean of residual energy consumption against event time
(days before/after assignment to the treatment or control group) for each of the two experiments.>>

3lWe do not directly observe whether system temperature changes are due to permanent setpoints or temporary
overrides, but we are able to infer event types based on the precise timing of when the changes occur. See Appendix
Section D for details.

32 Average ambient temperatures are higher in Northern than Central California because of seasonal variation. The
Northern California panel spans July through January, whereas the Central California panel runs from December
through January.

33We project out household fixed effects prior to taking daily averages to adjust for pre-period differences in elec-
tricity use in a subset of Northern California homes for which we observe only a limited number of pre-period energy
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Panel (a) displays electricity use, and Panel (b) illustrates the patterns in natural gas consumption.
The figure shows that being assigned to receive free installation of a smart thermostat has no dis-
cernible impact on subsequent patterns of use. However, the raw data is too noisy to be visually
conclusive.’*

To provide further evidence of the validity of the experimental randomization and additional
evidence of parallel pre-trends, Figure 2.7 plots the coefficient estimates and 95% confidence inter-
vals from event studies of the effect of assignment to treatment.>> Panels (a) and (b) plot electricity
and natural gas estimates, respectively, based on data from the Northern California experiment.
Panels (c) and (d) plot the Central California experiment analogs. Consistent with Appendix Figure
20, the event study plots show evidence of parallel pre-trends, but do not indicate large, persistent
effects of being assigned to treatment on energy use.

We note that these figures do not account for incomplete take-up of the treatment, and they are
based on temporally aggregated, day-level data. For these reasons, in the next section, we outline
empirical models that allow us to instrument for smart thermostat installation and take advantage
of the high-frequency nature of the electricity consumption data.

values.

34For instance, the seasonal effects of summer for electricity use and winter for natural gas can be seen in the
patterns in the data.

33The models being estimated include household fixed effects and daily time effects. Confidence intervals are based
on standard errors clustered by household. To mitigate the visual effects of noisy coefficient estimates resulting from
unbalanced lags and leads at the endpoints of the time window, we bin all lags and leads that are based on fewer than
30 observations (Schmidheiny and Siegloch, 2019; Clarke and Schythe, 2020).
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Figure 6: Event Study Estimates of Energy Use by Experiment
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3 Empirical Model

Our field experiment randomizes receipt of a smart thermostat among eligible applicants. We
observe a long time series of household-level energy use for treatment and control groups before
and after experimental assignment. Both motivate our empirical strategy. Given the potential pre-
period imbalance in electricity use discussed in Section 2.6, we estimate difference-in-differences
(DD) models. To address noncompliance with experimental randomization, we augment our DD
model with instrumental variables (IV) modeling techniques. We begin by formalizing our model
specification, then discuss identification issues.

3.1 Model Specification

We model the effect of a smart thermostat on household i’s consumption of energy type j €{kWh,
thm} (electricity, natural gas) in time period ¢ (e{t) using a DD model:
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el = o + B+ YISk + XS +u, (1)

where S; is an indicator equal to one if household i installs a smart thermostat, F; is an indicator for
post-assignment status in time period ¢, Xj; is a vector of controls, aij is a household fixed effect, ﬁ,j
is a vector of time effects, and u{t is a household/time varying unobservable.?® We cluster standard
errors at the household level to account for serial correlation (Bertrand et al., 2004) and estimate
the model separately for each energy type. When j denotes electricity, energy is measured in kWh
and the time period is an hour. If j denotes natural gas, the energy unit is a therm and observations
are recorded daily.

Our parameter of interest is 7/, which measures the differential change in energy use across
pre- and post-intervention periods for smart relative to traditional thermostat households. This
specification implicitly assumes that smart thermostats have a constant effect for all households.
Given that individuals in our treatment sample are each optimizing over their household’s expected
energy savings and installation costs when deciding whether or not to follow through with instal-
lation of the smart thermostat, our treatment is likely to result in heterogeneous effects and Roy
(1951) selection on gains. Consistent with this underlying model of behavior, there is incomplete
installation compliance among the treated households in our experiment (see Figure 1). To address
concerns of bias from noncompliance, we estimate a DDIV model that uses the experimental ran-
domization as an instrument for the installation of a smart thermostat. Formally, we estimate ¥/

.. . . . !/
using two-stage least squares (2SLS) methods with E [ZJ ul } =0, where Zj, = (O‘i] B/, T,~Pt,X,~t> ,

it™it

and T; is an indicator for household i’s treatment status in our experiment.’’

3.2 Identification

If the assumption of parallel trends holds in our DD setting, our instrument is relevant and valid,
monotonicity holds, and there is one-sided noncompliance in our experiment, our DDIV coefficient
of interest, ¥/, identifies the ATT of a smart thermostat (Cornelissen et al., 2016). This is the
average impact of a smart thermostat on the energy use of households that install one. We discuss
our identifying assumptions in more detail in Appendix Section F.38

36We obtain similar results when estimating the model on the natural log of energy consumption (In(e})). If the
randomization in our experiment is valid, our coefficient of interest is identified regardless of whether or not we include
household fixed effects (ocij ), time effects (ﬁ,’ ), or additional controls (Xj;). Thus, we begin by estimating a basic
specification of the model without any additional covariates that replaces (XiJ with o/S; and B/ with B/F,. Subsequent
specifications add controls for the weather (which cannot be randomized a priori), household fixed effects, and various
time effects to demonstrate robustness and to improve the efficiency of our estimates. Results are qualitatively similar
across all specifications.

37Equation 1 is the second-stage equation, and the first stage is modeled as

SiP = 0! + K/ + MITiP + Xy 1! +w),. 2)

3 First-stage results in Appendix Section G provide strong support for instrument relevance. Appendix Table 5 and
Figure 2.7 provide evidence in favor of instrument validity and parallel trends. Monotonicity is a standard assump-
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4 Results

We begin by reporting estimates of the parameters in Equation 1 for electricity and natural gas in
the next section. We then re-estimate the model on restricted subsamples of the data to investigate
whether our main results mask significant, but offsetting, heterogeneous treatment effects. In the
subsequent section, we estimate the model separately by quintile of ambient weather conditions,
day of the week, hour of the day, hour of the day by weekday/weekend, quintile of the price of
electricity, and during peak-use alerts.

4.1 Main Estimates

Table 1 summarizes multiple estimates of the effect of a smart thermostat on energy use based
on each of the two experiments and the combined sample of all households recruited during both
experiments. Panel (A) reports estimated effects on hourly electricity usage, and Panel (B) reports
analogous estimates based on daily consumption of natural gas. Each ATT estimate reported in
Columns (1) through (6) is based on a separate DDIV regression corresponding to the experimental
sample indicated in the given row and the controls indicated at the bottom of the table.>* Column
(1) reports estimates of a basic version of the DDIV model without any fixed effects, time effects
or other additional controls.*® Column (2) reports estimates from a model that adds an indicator
for experimental wave to control for differences in recruitment conditions, as well as linear and
quadratic county temperature and humidity readings to control for ambient weather conditions.
Column (3) reports estimates from a model that adds household fixed effects to control for all of the
time-invariant, unobserved characteristics of the home and household (e.g., age and square footage
of the home, number of family members).*!  Column (4) reports estimates from a model that
adds month-of-year (MOY) effects to control for aggregate, time-varying effects such as seasonal
variation in weather patterns. Column (5) adds day-of-week effects to control for variation in daily
usage patterns due to occupant work and schooling schedules. Finally, Column (6) replaces the
time effects with day and hour-of-day effects.*>

tion in IV settings that rules out irrational behavior. Finally, our experimental environment suggests that one-sided
non-compliance is a reasonable assumption. In our context, this means that while some households randomized into
treatment do not install a smart thermostat, no households in the control group install one. At the time of our ex-
periment, smart thermostats were a nascent technology. According to the EIA’s Residential Energy Consumption
Survey (RECS), two to three years after our experiment, only 4.09% of all households in the survey and 10.58% of
observationally similar households owned a smart thermostat. Regardless, note that if we relax the one-sided non-
compliance assumption to one of monotonicity, our DDIV specification instead recovers the Local Average Treatment
Effect (LATE) estimate of 7/ (Imbens and Angrist, 1994).

¥See Appendix Tables 6, 7, and 8 for identical estimates with full regression diagnostics. The rk LM and Wald
F statistics reported in those tables are first-stage diagnostic tests of under and weak identification, respectively, in
models with non-i.i.d. errors. In all specifications, we reject the nulls of an under or weakly identified model. See
Kleibergen and Paap (2006) for details.

“ORelative to Equation 1, the model in Column (1) replaces & with a/S;, B/ with B/P;, and restricts 8/ = 0.

41Since the experimental wave indicator is perfectly collinear with recruitment wave, we drop the wave indicator
from this and subsequent specifications.

42The estimates in Panel B are based on daily natural gas meter readings (thm), so the hour-of-day effects noted in
Column (6) are included in the electricity model (Panel A) only. Estimates based on models that instead include week-
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The coefficient estimate of —0.055 reported in Column (1) of the first row in Panel (A) in-
dicates that a smart thermostat causes a 0.055 kWh decrease in electricity usage per hour. The
cluster-robust estimate of the standard error of 0.058 reported in parentheses indicates that this
estimate is statistically insignificant.*> To put the magnitudes of these effects in context, Column
(7) reports mean energy use in the control group in the corresponding sample. The estimated effect
is equivalent to 4.986 percent of control group energy use of 1.103 kWhs per hour. The corre-
sponding natural gas coefficient estimate in Panel (B) is equivalent to only 0.633 percent of control
energy use. Both estimates are well short of the savings estimates from engineering studies touted
by thermostat manufacturers. Across all specifications in both panels, the lack of economic or sta-
tistical significance indicates that smart thermostats do not reduce energy usage. In fact, both the
electricity and natural gas estimates reported in Column (6) that are based on the combined sample
from both experiments are positive, and the natural gas estimate is statistically significant.

4.2 Heterogeneity in Treatment Effects

In order to investigate the possibility of significant, heterogeneous effects that are not apparent in
the aggregate, we estimate the model conditional on various sub-sample selection criteria. Given
that the results in Table 1 do not indicate any substantial differences between experiments and
given that all subsequent specifications include household fixed effects, all results presented in
this section start from a sample that pools the observations from both experiments. This should
also give our models the best chance of recovering a significant heterogeneous treatment effect.
We treat the model reported in Column (5) of Table 1 as our preferred specification and use it as
the basis for our subsequent analyses because it is applicable to both samples with hourly- and
daily-level variation.

First, since smart thermostats will only have an effect on energy usage when there is a need
for the HVAC system to heat or cool the house, moderate ambient temperature observations may
attenuate a significant effect. To address this concern, Appendix Table 9 reports estimates by
ambient temperature quintile. If the effect of a smart thermostat is only apparent when the HVAC
system is in use, we would expect to find significant effects in the upper quintiles of temperature
for electricity use and in the lower quintiles for natural gas. This is not the case. Only one of the
10 estimates is statistically significant, and the significant effect occurs in the second quintile of
temperature for electricity consumption. Given the overall pattern of results, this finding is likely
spurious.

of-year, month-by-year, week-by-year, and day-by-hour effects result in qualitatively similar results. Furthermore,
estimates based on models that include weather controls, day-of-week effects, and household-by-MOY (or household-
by-WOY) effects do not affect our findings. The specification identifies off of hourly (electricity) or daily (gas)
variation in usage within a household at a particular time of year. Intuitively, identification comes from the change in
consumption in a given month of a the year for a treated home before and after treatment, relative to that same change
for a control home. We also estimate models that include ZIP Code-by-MOY and ZIP Code-by-WQY effects that
similarly identify off of variation within a neighborhood at a particular time of year. Again, results are qualitatively
similar.
43Standard errors are clustered at the household level.
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Table 1: ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(1) (2) 3 4) Q) (©) (7
Power Use (kWh or thm) Mean

Panel A: Electricity (kWh)

N. CA Experiment: ATT (#%") -0.055 -0.061 -0.016 -0.016 -0.016 -0.003 1.103
(0.058) (0.058) (0.046) (0.046) (0.046) (0.041) (1.196)

C. CA Experiment: ATT (") 0.009 0.006 0.002 0.002 0.002  -0.001 1.191
(0.029) (0.028) (0.025) (0.025) (0.025) (0.023) (1.273)

Both Experiments: ATT (") -0.031  -0.031  -0.003  -0.001 -0.001 0.026 1.140
(0.036) (0.035) (0.022) (0.022) (0.022) (0.017) (1.230)

Panel B: Natural Gas (thm)

N. CA Experiment: ATT (#")  -0.009 0.009 0.085 0.075 0.075 0.069 1.422
(0.061) (0.063) (0.068) (0.066) (0.066) (0.055) (1.761)

C. CA Experiment: ATT (")  -0.003 0.007 0.001 0.001 0.001  -0.021 1.129
(0.044) (0.031) (0.027) (0.026) (0.026) (0.026) (1.332)

Both Experiments: ATT (") 0.062 0.065 0.028 0.023 0.023 0.055%=* 1.298
(0.060) (0.049) (0.028) (0.026) (0.026) (0.022) (1.599)

Weather Controls X X

HH Fixed Effects X

Month-of-Year Effects X

Day-of-Week Effects X

Day Effects
Hour-of-Day Effects

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
Columns (1) through (6) report ATT estimates of the effect of a smart thermostat on energy use (f/j ) based on
separate DDIV regressions corresponding to the experimental sample indicated in the given row and the controls
indicated at the bottom of the table. To put the magnitudes of these effects in context, Column (7) reports mean
energy use in the control group in the corresponding sample. The samples used to produce the estimates in Panel
A are based on hourly electricity meter readings in kWh, while the samples underlying the estimates in Panels
B are based on daily natural gas meter readings (thm). Thus, the hour-of-day effects noted in Column (6) are
included in the electricity models (Panel A) only. Note that the estimates reported in Column (2) for samples that
combine data from both experiments include an indicator equal to one for observations in the Northern California
experiment. This indicator is perfectly co-linear with household fixed effects, so it is dropped from subsequent
models. See Appendix Tables 6, 7, and 8 for full regression diagnostics. Based on the values of the rk LM and
Wald F statistics reported in those tables, we reject the nulls of an under or weakly identified model across all

specifications.
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Similarly, Appendix Table 10 reports estimates by ambient humidity quintile. In contrast to
the results by temperature quintile, the estimates in Columns (4) and (5) of Panel A indicate that
smart thermostats have a significant, negative effect on electricity use when the humidity is high
(but not necessarily the temperature). We would expect to find this pattern of results if smart
thermostats are successful at reducing the level of humidity in treated homes without deviating
from a pre-programmed schedule, but individuals in the control group are prone to over-adjusting
their traditional thermostats to less energy-efficient setpoints in order to mitigate the discomfort
caused by high humidity. Consistent with this explanation, we do not find similar, significant
effects on the consumption of natural gas (in Panel B). Alternatively, as it takes more energy to
cool humid air than dry air, the pattern temperature and humidity results is consistent with smart
thermostats providing small energy-efficiency gains that are only evident when the HVAC system
has to work hardest.**

Next, since smart thermostats may only have an effect on energy use during the weekdays
when individuals have predictable schedules, Appendix Table 12 reports estimates by day of the
week and by weekday/weekend. Across all days of the week and when we aggregate to the week-
day/weekend level, we find no evidence that smart thermostats reduce energy consumption.

Similarly, smart thermostats may only have an effect during the times of day that individuals
typically schedule permanent temperature changes (e.g., before leaving for work/school or after
returning home). Appendix Table 13 reports estimates by hour of the day. We are only able
to calculate estimates conditional on the hour of the day for the effects of a smart thermostat on
electricity usage, as we observe natural gas use at the daily level. Again, there is scant evidence that
smart thermostats have a significant effect on energy use. To further test whether smart thermostats
have effects only during certain hours of the day on certain days of the week (e.g., weekdays),
Appendix Table 14 reports estimates by hour of the day separately for weekdays (Panel A) and
weekends (Panel B). Consistent with our previous findings, we do not find evidence of significant
effects on electricity use by hour of the day and day of the week.

Finally, since a potential benefit of smart technologies is that they enable consumers to better
respond to spikes in demand and network congestion that lead to increased wholesale prices and
brownouts (Joskow, 2012), we estimate two sets of models that condition on times when the social
benefits of reduced electricity consumption are the greatest. Appendix Table 15 reports results by
quintiles of electricity spot prices. If smart thermostats save energy at the most beneficial times,
we would expect to see a statistically significant, negative effect in the fifth quintile of prices when
production and external costs are the greatest, but none of the reported effects are statistically sig-
nificant. To further isolate periods of high demand, Appendix Table 16 conditions on times when
the system operator or utility issued a peak-usage alert. Column (1) reports estimates based on a
sample of hours when CAISO issued hourly alerts. Holladay et al. (2015) find that media coverage
impacts consumer responses to price alerts, so the estimates in Column (2) further condition on a
sample of hours when there was both a CAISO alert and local media coverage of that alert. Neither

4 Appendix Table 11 reports estimates from analogous models that condition on quintiles of the heat index (the
perceived temperature) to rule out effects by the combined effects of temperature and humidity on comfort. We do not
find significant results.
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of the resulting coefficient estimates is statistically significant.

In contrast, we find significant, negative effects when PG&E issues a daily, utility-wide alert.
Column (3) is based on a sample of all hours on alert days. PG&E advises their consumers to con-
serve electricity between 2:00pm and 7:00pm on these days, so the results in Columns (4) and (5)
disaggregate this effect into off-peak and peak hours, respectively. The coefficient estimate in Col-
umn (3) (Column (4), Column (5)) indicates that smart thermostats reduce electricity consumption
by 0.103 kWh (—0.073 kWh, —0.116 kWh) relative to mean electricity use of 1.775 kWh (1.402
kWh, 2.893 kWh) in the control group. These estimates imply that smart thermostats result in elec-
tricity conservation of 5.8 percent (5.2 percent, 4.0 percent). Although statistically and practically
significant, these estimates fall short of advertised impacts even at times when smart thermostats
should have their biggest impact on energy use. Appendix Figure 21 further disaggregates these
effects by hour of the day. While the estimates are rarely statistically different from zero, the
hourly estimates suggest that smart thermostats reduce electricity use before the peak alert period
begins, but that smart thermostat households undo some of this benefit by ramping up their energy
use before the peak period ends. The overall pattern of results on alert days is consistent with our
previous findings that smart thermostats under-deliver on their promised energy efficiency claims.

5 Potential Mechanisms

In this section, we supplement our experimental analysis by analyzing user interactions with the
smart thermostat. As shown in Appendix Table 4, this interactions data is heavily drawn from
the Northern California wave of the experiment, so we focus our analysis on those households.
We consider five questions with the interactions data of this sample. First, do users program
their smart thermostat? Second, are programmed setpoints energy-efficient setpoints? Third, do
users deviate from their programmed schedules? Fourth, do users deviate from their programmed
schedule towards energy-efficient setpoints? Fifth, do households save energy when they use the
smart thermostats scheduled setpoints and overrides as intended by engineers?

By answering these questions we aim to sharpen our understanding of the failure of the smart
thermostat to deliver energy savings. While engineering models assume households will utilize the
functionality of a smart thermostat and do so to conserve energy, economic models are ultimately
agnostic and emphasize the potential for preferences to interfere with the response desired by an
engineer. The first four questions consider whether households interact with the smart thermo-
stat as engineers predict. The fifth question considers whether the subsamples of households that
interact with their smart thermostat as an engineer assumes obtain the predicted energy savings.

We find that households schedule setpoints and that these setpoints are broadly in line with
energy-efficient suggestions. However, the setpoint overrides made easy by the smart thermostat
are common and these overrides are biased towards warmer setpoints in the winter and cooler
setpoints in the summer. Finally, we find that households using the setpoint functionality as an
engineering model assumes save as much as 10 to 20 percent on their consumption of natural gas.
However, these savings are not found for electricity consumption, nor for households using the
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override functionality to obtain more energy-efficient setpoints.

5.1 Do Users Program Their Smart Thermostats?

Peffer et al. (2013) find that programmable thermostats fail to achieve their advertised savings due,
in part, to poor usability.*> If users do not program schedules for their smart thermostats to follow
because the interfaces are too complicated or they do not understand how thermostats and/or their
HVAC systems work, we would not expect the installation of a smart thermostat to affect energy
consumption.

To determine the fraction of households who install the smart thermostat use the programmable
features of the device and how long it takes them to begin doing so, Figure 7 plots the CDF of the
time between the installation date and the first scheduled setpoint. The figure shows that almost all
users who install a smart thermostat program at least one permanent setpoint, and most households
do so almost immediately. The median time from installation to the first permanent setpoint is one
day.

Figure 7: Distribution of Time from Installation to First Scheduled Setpoint

Mean =4.6 Median=0.0 Min.=0.0 Max.=115.0

1
9
8
> 7
(7]
o 6
I
25
g 4
>
x
3 3
2
1
0

0 30 60 90 120
Days Between Installation & First Setpoint

Note: Cumulative density conditional on observing the household in the HVAC events data.

4Programmable thermostats are a precursor technology to smart thermostats. The two types of thermostats share
the ability to schedule permanent temperature setpoints in advance, but users cannot interact with programmable
thermostats remotely, nor do they offer built-in setpoint framing. Peffer et al. (2013) report that they were so difficult
to program that most users disabled their defining feature, and the ENERGY STAR program stopped certifying them
in December 2009.

23



Additionally, users do not just quickly schedule a permanent setpoint, then fail to continue to
use the smart features of the device. Individuals who have a smart thermostat installed as part of
our experiment set an average of 3.749 (heating and cooling) setpoints per day. Figure 8 plots
a measure of the frequency of permanent setpoints by hour of the day (denoted in military time)
for both heating (red bars) and cooling (blue bars) setpoints. The figure provides visual evidence
that setpoints occur frequently and when we would expect them: in the morning from about 5:00
AM until 10:00 AM when most users wake and leave for work and/or school. Similarly, there is
a small increase in frequency of setpoints during the afternoon from 4:00 PM until 7:00 PM when
users return home at the end of their days. Consistent with scheduling setpoints when most users
go to sleep, we also observe frequent setpoints in the evening from about 10:00 PM until 12:00
AM. Thus, our analysis suggests that users do program their smart thermostats both quickly and
frequently.

Figure 8: Average Permanent Setpoints per Household per Day by Time of Day
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5.2 Are Programmed Setpoints Energy-Efficient Setpoints?

The previous analysis is consistent with users taking advantage of their device’s scheduling fea-
ture, but is inconclusive as to whether or not they are programming setpoints to achieve energy
savings. To inform the latter, Figure 9 is a box and whisker plot of heating and cooling setpoints
by hour of the day. The dashed lines represent the cooling and heating temperature settings the
DOE recommends for energy savings of 78 degrees F for cooling and 68 degrees F for heating
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(DOE 2020). The figure illustrates that median (as well as the 25th and 75th percentiles of) tem-
peratures are in line with the DOE’s recommendations.*® According to Appendix Table 4, cooling
setpoints average 78.80 degrees F and are higher than heating setpoints, which average 63.95 de-
grees F. Additionally, the figure illustrates that there is temporal variation in setpoints over the
course of the day consistent with individuals adjusting settings when they leave the house: cool-
ing setpoints increase slightly starting at around 9:00 AM and drop back to baseline around 3:00
PM. Heating setpoints follow a similar, but opposite pattern with a more pronounced discrepancy
between evening and daytime temperature setpoints. Overall, while the figure illustrates variation
in setpoints across households, our analysis suggests that users program their smart thermostats to
save energy.*’

Figure 9: Box and Whisker Plots of Permanent Setpoints by Time of Day
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Note: Dashed lines represent DOE recommended cooling/heating settings.

5.3 Do Users Deviate from Their Programmed Schedules?

Given that users seem to be programming their smart thermostats and doing so with energy sav-
ings in mind, we turn to an alternative explanation for our null findings. The remote features of
the thermostat reduce the costs associated with both permanent and temporary setpoint changes.
If users program their thermostats to reduce energy usage, but the ability to more easily adjust

46The horizontal lines in the shaded boxes represent the median temperature setting, the ends of the boxes indicate
the first and third quartiles, and the ends of the whiskers denote the upper/lower adjacent values.

4TRegarding the variation in setpoints, Appendix Table 4 reports standard deviations of 4.12 degrees for cooling and
5.58 degrees for heating setpoints.
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temperature settings via a computer or smart phone makes individuals more likely to deviate from
their schedules, individuals may undo the benefits of their smart thermostat. If so, the effects of
the scheduling and override features of smart thermostats have opposing effects on energy use and
could result in a net null effect.

To explore this possibility, Figure 10 plots a measure of the frequency of setpoint overrides
by time of the day.*® As we would expect, overrides are more frequent when most individuals
are likely to be awake, from about 6:00 AM to 11:00 PM. Heating overrides peak in the morning
and early evening, while cooling overrides rise throughout the day until about 6:00 PM. More
importantly given our focus, the figure illustrates that users often override their permanent schedule
both when heating and cooling their homes. Compared to the previously noted 3.749 setpoints per
day, users in our data temporarily override their permanent setpoints an average of 1.699 times
per day. The hourly measures are also substantial relative to the number of permanent setpoints
reported in Figure 8.

Figure 10: Average Temporary Overrides per Household per Day by Time of Day

[] Cooling Override  [[] Heating Override

(V)

.
(6]

1
|

o
a

Average Overrides per Household per Day
|
I

lddd

01020304 05060708091011121314151617 18192021 2223 24
Time of Day

Note: Days defined as those when the HVAC system cooled/heated the home.

“8The figure is the analog to Figure 8 for temporary overrides, save for our definition of “per day.” While users
program both heating and cooling setpoints every day, we typically only observe heating (cooling) overrides on heating
(cooling) degree days. Given that we predominantly observe the HVAC system events data during the fall and winter,
failure to address this issue results in heating and cooling override measures that are of different magnitudes. To
account for this artifact in the data, we adjust the numerator of our measure to days on which the HVAC system heated
or cooled the home to standardize the scales of the heating and cooling override measures.
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5.4 Do Users Deviate From Their Programmed Schedule Towards Energy-
Efficient Setpoints?

Evidence that smart thermostat users frequently override their setpoints offers a potential explana-
tion for our null findings. The features of the smart thermostat that lower adjustment costs both
make it easier to override in ways that increase energy use (e.g., users no longer have to get off
the couch or out of bed and walk to the thermostat when they are uncomfortable) and to override
to decrease energy use (e.g., by toggling the HVAC system off when leaving home). To determine
which effect dominates, Figure 11 plots kernel densities of the difference between the override
temperature a user sets and the permanent setpoint, conditional on a temperature override, by
temperature setting (cooling or heating). The figure illustrates that when users override their per-
manently scheduled setpoints, they generally do so in ways that use more energy: when cooling,
they set temperatures colder and when heating, they set it warmer.** Taken together with the previ-
ous figure, our analysis suggests that individuals undo the benefits of their preset smart thermostat
schedule when they are uncomfortable in the moment. This suggests a potential explanation for
our null experimental findings, and is consistent with the observational studies (Sachs et al., 2012;
Peffer et al., 2013; Pritoni et al., 2015; Huchuk et al., 2020).

“There is a non-trivial mass at large override-setpoint temperature differences (e.g., greater than 10 degrees F).
This is primarily driven by a small number of households that program setpoints (~55 degrees F) that essentially turn
off the HVAC system in the morning and override those setpoints at varying times in the afternoon/evening every day.
This is consistent with using the programmable features of the smart thermostat based on a consistent daily departure
time and a variable return time. Additionally, we note that the figure plots override-setpoint temperature differences,
not override-ambient temperature differences. The ambient temperature may not actually be as low as the setpoint, so
the actual temperature change caused by the override may not be so extreme.
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Figure 11: Density of Difference between Temporary Override and Permanent Setpoint Tempera-
tures by Heating/Cooling
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Note: Densities truncated at the 5th and 95th percentiles.

5.5 Do Households Save Energy When the Smart Thermostat is Used as
Intended?

There is an extensive literature in economics in that shows that engineering estimates fail to live
up to their predictions (Davis et al., 2014; Levinson, 2016; Fowlie et al., 2018; Alpizar et al.,
2019; Davis et al., 2020). In this subsection we consider whether the non-response to the smart
thermostat in our experimental analysis is due to the smart thermostat not being used as intended.
To accomplish this, we estimate the effect of the smart thermostat on energy consumption for
different subsamples of households in the treatment group. These subsamples are selected to split
households who utilize the setpoint scheduling and overrides for energy-efficient temperatures
from those who do not.

We begin by using the interactions data to classify households who installed a smart thermostat
based on how diligently they use their device to achieve energy savings. We do so by defining three
energy-efficiency types: high (H), low (L), and unknown types (?). Appendix Figure 18 illustrates
how this classification builds on our existing experimental design. The unknown type is necessary
because we do not observe all households who install a smart thermostat in the HVAC events
data. The high and low types are based on the distributions of two measures of energy-efficiency:
the average number of permanent setpoints and temporary overrides observed per hour. For both
metrics, we specify models based on various cutpoints between high and low types. Appendix
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Figure 19 plots the CDFs of both measures of behavior based on all households for which we
observe interactions data. As an example, we define high-type households based on the permanent
setpoint measure as those above the median and low types as those below the median. In contrast,
for the other metric, we define high types as those below the median number of average overrides
per hour and low types as those above the median.

Given these classifications, we interact indicators for type with treatment and estimate a DDITT
model.”? Letting kK €{H, L, ?} index the three types, we estimate

e, = o) + B/ + Y Y TRP + X By, + e, 3)
k

where Ri-‘ is an indicator for household i being of type k and all other indexes, variables, and
parameters are defined as in Equations 1 and 2. The parameters of interest in this model are the y,i
which are the the ITT effects of a smart thermostat on the consumption of energy j for households
of type k.

Table 2 reports estimates of the y,r(hm parameters based on this subsample. Panel (A) reports
estimated effects from a model based on the permanent setpoint type classification, and Panel
(B) reports analogous estimates based on the temporary override type definition. Column (1)
reports estimates from a baseline DDITT model that does not differentiate by type. Consistent
with our DDIV model estimates, the effects are not statistically significant. Columns (2) through
(6) report estimates based on varying definitions of the high- vs. low-type percentile cutpoint.’!
The estimates in Panel (A) in these columns indicate that households above the 10th percentile of
average permanent setpoints per hour enjoy statistically significant savings, with those above the
90th percentile seeing the greatest reduction in their natural gas use. In contrast, low types who
program relatively few setpoints never reduce their energy consumption after installing a smart
thermostat.

Interestingly, the high types that are above the median of permanent setpoints experience en-
ergy savings that are broadly in line with the predictions of engineering estimates. For example,
Column (4) of Panel A shows the high types save about 0.15 thm per day and, on average, the con-
trol group consumes 1.5 thm per day. This 10 percent energy savings and the subsequent estimates
in Columns (5) and (6) line up strikingly well with the engineering estimates discussed in fn. 10
and 12. Moving to Panel B, however, we see less consistent evidence that temporary overrides
explain the response to the smart thermostat. In all columns except Column (6), we see no energy
savings regardless of type at traditional levels of significance.

These results illustrate that engineering estimates can go astray because households do not
utilize energy efficient technology as engineers assume. For example, in Column (4) of Table 2,
Panel A we see that approximately 50% of households save the energy predicted by engineering
estimates and the other 50% enjoy no such savings at all and this substantially attenuates the

>0We are not able to estimate an analogous DDIV model because we do not have valid instruments for types.
S1For instance, the estimates reported in Column (4) of Panel (A) define high-types as those with more than the
median number of setpoints per hour and low-types as those below the median.
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effect of the technology. Furthermore, in Panel B, we find that most specifications fail to find any
evidence of temporary overrides providing households with energy savings. As a result, consumer
and policymaker decisions based on these estimates are destined to fall short of their expected
effects.

Table 2: ITT Estimates of the Effect of a Smart Thermostat on Natural Gas Use by Setpoint and
Override Type

ey @) 3) “ &) (6)
High/Low-Type Percentile Cutpoint
Baseline 10 25 50 75 90

Power Use (thm)

Panel A: Permanent Setpoint Type Classification

ITT (™) 0.051
(0.045)
High Type ITT (™) -0.076 -0.108** -0.146%** -0.178%*%* -0.302%**
(0.047) (0.047) (0.050) (0.061) (0.074)
Low Type ITT (§;"™) -0.071 0.088 0.014 -0.025 -0.046
(0.146) (0.105) (0.069) (0.055) (0.049)
N 805 805 805 805 805 805
NxT 398,243 398,243 398,243 398,243 398,243 398,243
R? 0.618 0.618 0.618 0.618 0.618 0.618
F statistic 520.944  397.030  398.793 397.866 398.103 398.168
Panel B: Temporary Override Type Classification
ITT (") 0.051
(0.045)
High Type ITT (§iim) 0.058 -0.070 -0.068 -0.082 -0.095%*
(0.146) (0.081) (0.061) (0.050) (0.046)
Low Type ITT (§:"™) -0.091* -0.077 -0.086 -0.040 0.414%%*
(0.046) (0.050) (0.054) (0.074) (0.095)
N 805 805 805 805 805 805
NxT 398,243 398,243 398,243 398,243 398,243 398,243
R? 0.618 0.618 0.618 0.618 0.618 0.618
F statistic 520.944  398.476  398.424 402.226 401.014 409.991
Weather Controls X X X X X X
HH Fixed Effects X X X X X X
Month-of-Year Effects X X X X X X
Day-of-Week Effects X X X X X X

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.

All estimates are based on a sample comprised of the Northern California wave of the experiment. The sample

underlying the estimates in both panels is based on daily natural gas meter readings (thm). The coefficient estimate

for the unknown type ITT parameter (%h’") is 0.014 across all specifications, and it is not statistically significant.
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6 Conclusion

Our work informs the efficacy of a popular technology designed to conserve energy by exploring
how smart technologies affect energy use—both through actual measurement and by investigating
the mechanisms that prevent the realization of advertised energy savings. We provide evidence
from a field experiment wherein residential households are randomized into either a treatment
group that receives a smart thermostat or a control group. The smart thermostats given to the
treatment group allow households to set more advanced schedules and adjust temperature settings
remotely via a smart phone app. In addition, the smart thermostats provide households in the
treatment group with information designed to promote energy-efficient setpoints.

In contrast to the commonly held prior that smart thermostats are an effective way to reduce
residential energy use, we find little to no evidence that the installation of a smart thermosat reduces
household energy consumption on average. This null result is robust to numerous specifications.
We believe that the discord between the results of our field experiment and the extant belief stems
from the source of the latter: engineering studies that do not adequately account for how individuals
use their smart devices. We augment our experimental analysis with data on user interactions with
their smart thermostat and find evidence that supports this belief.

There are many ways to extend our research. One avenue would be to better understand how
different smart technology features, that often have opposing theoretical energy impacts, affect ac-
tual usage. Another would be to understand why smart thermostats are so popular given their costs
and trivial energy-efficiency benefits. This avenue speaks to the energy efficiency gap literature
as outlined by Allcott and Greenstone (2012). A further avenue would be to explore the impact
that such technologies have on the price elasticity of energy demand (some preliminary evidence
from Herter (2007) suggests that they do). If technology can enable people to better optimize their
energy consumption, then price might become even more salient and therefore make people more
marginal.

In summary, cooling and heating homes, powering transportation, and producing the wealth
of goods and services enjoyed in modern economies are all heavily reliant on energy. Given that
most of the world relies on non-renewable resources to produce energy and this reliance will not
end any time soon (Covert et al., 2016), one of the greatest policy challenges of this century is how
to address the negative externalities associated with energy production. Without efforts to promote
energy conservation and associated reductions in greenhouse gas emissions, future generations will
face a lower quality of life due to a degraded environment. Our hope is that this paper is a step
towards ensuring that decision makers focus their energies on the smartest policies possible.
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A Smart Thermostat

Figure 12: Smart Thermostat Overview

(a) Interfaces: The left panel shows the web portal, the middle panel shows the smartphone app, and
the right panel shows the thermostat.
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I'm usually at home.

It's unpredictable.

My Monday schedule:
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Leave home: 07:45 AM >
Return home: 05:00 PM >
Bedtime: 10:00 PM >

(b) Permanent Setpoint Scheduling: Screen-
shot of the smartphone app scheduling inter-
face.
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Figure 13: Smart Thermostat Features
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(a) Setpoint Choice Messaging: Screenshots of smartphone app that shows the messaging associated with
different temperature set points.
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(b) Temporary Overrides: Screenshots of the smartphone app that fa-
cilitates changes to the temperature setpoint. The left panel shows the

interface after the user indicates she is not home. The right panel shows
the same interface when the user indicates she is at home.
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B Experimental Data

Figure 14: Conditional Distribution of Time from Assignment to Installation
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Figure 15: Locatlons of Treatment and Control Groups
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C External Data

Table 3: Daily Outdoor Weather Summary Statistics

Between Within

Daily Std. County County

Variable Measure ~ Mean Dev. Std. Dev. Std. Dev. Min. Max

Panel A: N. CA Experiment

Temperature (°F) Mean 61.54 11.53 1.23 1148 3329 91.25
Minimum 49.19  9.88 0.44 9.88 21.00 76.00
Maximum 75.78 14.35 1.70 14.27 43.00 108.00

Relative Mean 60.02 15.46 2.90 1525 1054 9753

Humidity (%) Minimum 33.77 16.66 1.99 16.57 3.00 93.00
Maximum 84.46 11.85 2.28 11.69 14.00 100.00

Heat Index (°F)  Mean 60.61 11.57 1.16 11.52 31.62 90.30
Minimum 48.42 10.25 0.45 10.24 1897 76.01
Maximum 74.19 13.63 1.54 13.57 40.82 108.61

N 4

NxT 2,060

Panel B: C. CA Experiment

Temperature (°F) Mean 66.58 14.36 2.56 1420 32.63 96.04
Minimum 54.20 1291 3.66 12.56 19.00 85.00
Maximum 79.85 16.05 1.17 16.02 45.00 110.00

Relative Mean 51.11 17.08 6.55 16.22 1333  96.78

Humidity (%) Minimum 28.86 15.74 1.78 15.67 2.00 90.00
Maximum 73.15 16.87 10.15 1470  22.00 100.00

Heat Index (°F)  Mean 65.42 14.18 243 14.04 30.62 95.68
Minimum 53.41 13.28 3.62 1294 16.87 83.66
Maximum 77.81 15.07 1.09 15.04 43.20 109.53

N 3

NxT 1,545

Panel C: Both Experiments

Temperature (°F) Mean 63.70 13.06 3.20 12.71 32.63 96.04
Minimum 51.34 11.55 3.43 11.10 19.00 85.00
Maximum 77.52 15.23 2.58 15.05 43.00 110.00

Relative Mean 56.20 16.76 6.42 15.67 10.54 97.53

Humidity (%) Minimum 31.66 16.45 3.15 16.19 2.00 93.00
Maximum 79.62 15.28 8.57 13.06 14.00 100.00

Heat Index (°F)  Mean 62.67 12.97 3.04 12.66 30.62  95.68
Minimum 50.56 11.90 3.41 11.48 16.87 83.66
Maximum 75.74 1ﬂ.47>8 2.31 14.22  40.82 109.53

N 7

NxT 3,605




Figure 16: Box and Whisker Plots of CAISO Spot Price by Quintile of Price
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D Internal Data

The HVAC system events data does not label temperature changes as being the result of a per-
manent setpoint or temporary override. We infer this information based on the precise timing of
when the change occurs. Appendix Figure 17 informs our approach to this classification. Panel (a)
plots the density of the second of the minute at which temperature changes take place. The density
is roughly uniform with a probability of about 0.70 across all seconds, save for a large increase
in the probability of changes occurring at :00 through :02 (and to a lesser extent :03) seconds of
the minute. Since we would expect temporary overrides to occur uniformly across seconds of the
minute, we code temperature changes occurring at less than :03 seconds of the minute as perma-
nent setpoints and all other temperature changes as temporary overrides. Panel (b) plots the density
of permanent setpoints (as determined by our classification rule) by minute of the hour. Consistent
with our priors, users schedule most setpoints on the hour or half hour (and to a lesser extent, at
:15 and :45 minutes past the hour). This is both a finding and a confirmation of the validity of our
approach to classifying setpoints and overrides.
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Figure 17: Timing of HVAC System Events
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Figure 18: Modified Sample Randomization with Energy-Efficiency Types (N. CA Experiment)
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Note: Counts of high- and low-efficiency types are based on a definition that divides types at the median.

Figure 19: Distributions of Permanent Setpoints and Temporary Overrides
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E Balance and Time-Trend Analysis

Table 5: Balance Table

(1) (2) (3)
Both N.CA C.CA
Treatment Treatment Treatment
Variable Indicator Indicator Indicator
Household Characteristics
Family in the Household Indicator 0.025 -0.028 0.083
(0.053) (0.071) (0.080)
Pets in the Household Indicator 0.013 0.019 0.005
(0.029) (0.038) (0.045)
HER Experiment Indicator -0.021 -0.004 -0.046
(0.031) (0.040) (0.048)
HER Recipient Indicator -0.006 0.027 -0.062

(0.039) (0.049) (0.063)
Home Characteristics

Multi-Family Home Indicator -0.017 -0.022 0.039
(0.080) (0.091) (0.166)
Year Home Built (Year / 1,000) 0.230 -0.589 1.363
(0.800) (1.110) (1.170)
Size of Home (Sq. Ft. / 10,000) 0.286 0.377 -0.061
(0.246) (0.324) (0.433)
Pool Indicator -0.006 0.037 -0.082
(0.033) (0.044) (0.052)
Electric Heat Indicator 0.014 -0.068 0.126

(0.094) (0.125) (0.140)
Pre-Period Energy Use

Mean (kWh) -0.036 -0.054 0.010
(0.028) (0.034) (0.048)
Mean (thm) -0.029 0.002 -0.054

(0.032) (0.050) (0.040)

N 1,385 821 564
R? 0.011 0.015 0.021
F 0.664 0.689 0.799

Notes: Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

The table reports linear probability model estimates of the probability of assignment to treatment. The HER Experi-
ment Indicator variable is equal to one for households that participated in the Home Energy Report experiment, and
the HER Recipient Indicator variable is equal to one for households that were assigned to the treatment group in that
experiment. We interpolate missing values of continuous variables (year built, home size, and pre-period energy use).
We also code as zero and include an indicator for missing values of binary variables (heating type) and mismeasured
values of pre-period electricity means in Northern California that are based on less than two weeks of data (see Sec-
tion 2.4). Models include indicators for month and county of recruitment, as well as the aforementioned indicators for
missing/mismeasured values. All omitted coefficient estiglﬁtes are statistically insignificant. The F-statistic tests the
null hypothesis that all parameters are jointly equal to zero. We fail to reject the null in all three models.



Figure 20: Average Residual Energy Use by Experimental Status and Wave
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F Discussion of Identifying Assumptions

Our DDIV empirical specification identifies the ATT of a smart thermostat if our experimental
instrument is relevant and valid, there are common or parallel trends, monotonicity holds, and there
is one-sided experimental noncompliance.’> We provide evidence that each of these assumptions is
reasonable in this section. First, instrument relevance requires that assignment to treatment affects
the probability that a household installs a smart thermostat. We report the first-stage F statistics
with all of our results tables. As one would expect of a field experiment, we always easily reject
the null of weak instruments.

Second, the instrument validity assumption in a DDIV model can be thought of as two separate
conditions (Hudson et al., 2017). The first is the traditional IV assumption that the instrument
is exogenous and the only way assignment to the treatment group affects energy use is through
the installation of a smart thermostat. The second is the assumption implicit in all DD analyses
that post-period randomization does not affect the pre-period values of outcomes (energy use)
or treatment (smart thermostat installation). Both assumptions are satisfied by the nature of our
experiment: households are randomly assigned to a treatment or control group. Assignment occurs
both (shortly) after the household first interacts with the experimenter and after the household’s pre-
period energy use decisions have been made. The analyses in Section 2.6 and 2.7 are consistent
with an appropriate randomization process.

Third, the common or parallel trends assumption requires that the unobserved, counterfactual
trend in energy use that would have been experienced by the treated group is parallel to observable,
untreated trend in the comparison group. In the context of our experiment, this means that the
energy consumed by control group households is a good proxy for the energy homes who installed
a smart thermostat would have used in a counterfactual world without a smart thermostat. While
this assumption is fundamentally untestable because of the counterfactual outcomes problem, it
is satisfied if there is appropriate randomization (Hudson et al., 2017). Nonetheless, we provide
additional support for this assumption by showing evidence of parallel pre-trends via the event
studies in Section 2.7.

Finally, if there is two-sided noncompliance in an experiment, the estimates are confounded
by substitution bias (Heckman and Smith, 1995). The standard in the literature is to relax the
noncompliance assumption to one of monotonicity (or uniformity). In our case, this means that
the experimental treatment makes all households in more (or less) likely to get a smart thermostat
than they would have been otherwise. Under this alternative assumption, the DDIV specification
recovers the LATE estimate of 7/ (Imbens and Angrist, 1994). This is an estimate of the average
impact of a smart thermostat on the energy consumption of households that were induced to install
one by our experiment.

Our experimental environment allows us to make the stronger assumption that there is one-
sided experimental noncompliance that allows us to identify the ATT of a smart thermostat. The

32 Alternatively, we can recover the ITT estimate of ¥/ by replacing the S; in Equation 1 with 7;. This is an estimate
of the average effect of being randomized into the treatment group in our experiment. We estimate DDITT models in
Section 5.5 as we do not observe additional instruments for household energy-efficiency types.
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assumption of one-sided noncompliance is tenuous to the extent that "the need for treatment under
question is widely acknowledged and there is competition over implementation" (Ito, 2007). This
is not the case in our context as smart thermostat technology was in its infancy at the time of our
study. Using data from the EIA’s Residential Energy Consumption Survey (RECS), we find that
two to three years after our experiment, only 4.09% of all households in the survey and 10.58% of
households observationally similar to those in our study own a smart thermostat.>®> Additionally,
while we are unable to directly observe whether any households in the control group upgrade their
thermostat, we never observe control households using a smart thermostat on Opower platform.
Thus, the available evidence supports the validity of the assumption of one-sided noncompliance
in our experimental context.

3The RECS is not conducted annually, so we use data from the 2015 survey as it is the closest possible survey
iteration subsequent to the time period observed in our data. The previous iteration of the survey in 2009 did not ask
questions about smart devices. We define "observationally similar" households by restricting the RECS sample to
homes that would pass Opower’s initial eligibility screening to join the trial (to the extent possible given the measures
available). Specifically, we condition on owner-occupied, single-family homes located in the Pacific Division (state
of residence is not observed) that have a functioning central furnace or heat pump, central air conditioning, and
an electrical connection. We are not able to condition on whether or not the household has a high-speed Internet
connection or whether the occupants plan to move in the next year, as those questions are not part of the RECS survey.

53



G Main Results with Full Regression Diagnostics

Table 6: N. CA Experiment-ATT Estimates of the Effect of a Smart Thermostat on Energy Use

() 2) 3) 4) (%) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
ATT (W) -0.055 -0.061 -0.016 -0.016 -0.016 -0.003

(0.058) (0.058) (0.046) (0.046) (0.046) (0.041)
Constant 1.294%**

(0.035)
N 815 815 815 815 815 815
NxT 9,729,849 9,729,849 9,729,849 9,729,849 9,729,849 9,729,849
F statistic 44.591 270.070 343.596 353.483 350.375 171.299
rk LM statistic 391.219 391.264 313.225 313.190 313.190 269.656
rk Wald F statistic 379.956 380.003 670.871 670.765 670.766 639.637
Panel B: Natural Gas (thm)
ATT (§7™) -0.009 0.009 0.085 0.075 0.075 0.069

(0.061) (0.063) (0.068) (0.066) (0.066) (0.055)
Constant 0.523*%*

(0.020)
N 805 805 805 805 805 805
NxT 398,243 398,243 398,243 398,243 398,243 398,243
F statistic 801.768 568.771 674.486 519.934 520.789 22.446
rk LM statistic 386.783 386.896 313.868 313.885 313.886 270.288
rk Wald F statistic 377.042 377.090 672.580 672.617 672.609 641.179
Weather Controls X X
HH Fixed Effects X
Month-of-Year Effects X
Day-of-Week Effects X

Day Effects
Hour-of-Day Effects

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
All estimates are based on a sample comprised of the Northern California wave of the experiment. The sample
used to produce the estimates in Panel A is based on hourly electricity meter readings in kWh, while the sample
underlying the estimates in Panel B is based on daily natural gas meter readings (thm). Thus, the hour-of-day
effects noted in Column (6) are included in the electricity model (Panel A) only. Based on the values of the rk LM
and Wald F statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Table 7: C. CA Experiment-ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(H ) 3) 4) (%) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
ATT (§Wh) 0.009 0.006 0.002 0.002 0.002 -0.001

(0.029) (0.028) (0.025) (0.025) (0.025) (0.023)
Constant 1.292 %%

(0.030)
N 564 564 564 564 564 564
NxT 6,691,885 6,691,885 6,691,885 6,691,885 6,691,885 6,691,885
F statistic 49.321 411.636 539.983 392.831 389.611 249.936
rk LM statistic 394.996 395.009 384.992 384.985 384.985 374.160
rk Wald F statistic 677.494 677.449 1,352.535  1,352.620 1,352.619  1,365.852
Panel B: Natural Gas (thm)
ATT (§'m) -0.003 0.007 0.001 0.001 0.001 -0.021

(0.044) (0.031) (0.027) (0.026) (0.026) (0.026)
Constant 1.101%**

(0.034)
N 564 564 564 564 564 564
NxT 279,061 279,061 279,061 279,061 279,061 279,061
F statistic 3.488 357.120 408.612 280.326 281.833 15.312
rk LM statistic 393.909 393.941 390.416 390.404 390.404 379.295
rk Wald F statistic 675.636 675.284 1,376.620  1,376.557 1,376.527  1,388.599
Weather Controls X X
HH Fixed Effects X
Month-of-Year Effects X
Day-of-Week Effects X
Day Effects X
Hour-of-Day Effects X

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
All estimates are based on a sample comprised of the Central California wave of the experiment. The sample
used to produce the estimates in Panel A is based on hourly electricity meter readings in kWh, while the sample
underlying the estimates in Panel B is based on daily natural gas meter readings (thm). Thus, the hour-of-day
effects noted in Column (6) are included in the electricity model (Panel A) only. Based on the values of the rk LM
and Wald F statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Table 8: Both Experiments-ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(1) 2) (3) “) &) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
ATT (Wh) -0.031 -0.031 -0.003 -0.001 -0.001 0.026

(0.036) (0.035) (0.022) (0.022) (0.022) (0.017)
Constant 1.293%*%*

(0.024)
N 1,379 1,379 1,379 1,379 1,379 1,379
NxT 16,421,734 16,421,734 16,421,734 16,421,734 16,421,734 16,421,734
F statistic 67.704 538.083 818.852 749.195 743.903 547.479
rk LM statistic 738.263 749.372 611.958 612.274 612.275 488.960
rk Wald F statistic 790.294 819.435 1,948.381 1,951.624  1,951.629 1,931.185
Panel B: Natural Gas (thm)
ATT (§'™) 0.062 0.065 0.028 0.023 0.023 0.055%*

(0.060) (0.049) (0.028) (0.026) (0.026) (0.022)
Constant 0.963%%**

(0.028)
N 1,369 1,369 1,369 1,369 1,369 1,369
NxT 677,304 677,304 677,304 677,304 677,304 677,304
F statistic 126.946 685.010 910.597 687.556 686.021 87.637
rk LM statistic 733.785 744.065 618.764 619.162 619.163 497.269
rk Wald F statistic 790.386 817.152 1,976.210 1,980.104 1,980.097 1,958.933
Wave Indicator
Weather Controls X
HH Fixed Effects X
Month-of-Year Effects X
Day-of-Week Effects X

Day Effects
Hour-of-Day Effects

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.

All estimates are based on a sample comprised of both waves of the experiment. Note that the estimates reported

in Column (2) are based on a model that includes an indicator for the first wave of experiment (N. CA). This

indicator is perfectly co-linear with household fixed effects, so it is dropped from subsequent models. The sample

used to produce the estimates in Panel A is based on hourly electricity meter readings in kWh, while the sample

underlying the estimates in Panel B is based on daily natural gas meter readings (thm). Thus, the hour-of-day

effects noted in Column (6) are included in the electricity model (Panel A) only. Based on the values of the rk LM

and Wald F statistics, we reject the nulls of an under or weakly identified model across all specifications.
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H Heterogeneous Treatment Effects Estimates

H.1 Ambient Weather Estimates

Table 9: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Tempera-
ture Quintile

(1) (2) (3) 4) (%)
Quintile 1 Quintile 2 Quintile 3  Quintile 4  Quintile 5
Power Use (kWh or thm)

Panel A: Electricity (kWh)
ATT (W) -0.036 -0.033* -0.024 -0.008 0.009
(0.022) (0.019) (0.019) (0.024) (0.044)

N 1,376 1,379 1,379 1,379 1,378

NxT 3,345,085 3,541,064 3,239,489 3,102,224 3,193,872
F statistic 1.522 1.610 14.502 16.745 24.597
rk LM statistic 368.164 652.296 681.468 600.120 545.434
rk Wald F statistic 1,379.806  1,920.331  1,966.682  1,879.175  1,769.185

Panel B: Natural Gas (thm)
ATT (9hm) -0.054 -0.013 0.005 -0.008 0.010
(0.064) (0.038) (0.023) (0.018) (0.015)

N 1,364 1,366 1,369 1,368 1,365
NxT 145,525 147,440 120,087 138,512 125,737
F statistic 22.958 0.550 6.339 6.145 0.431
rk LM statistic 360.657 435.244 563.227 699.424 403.356
rk Wald F' statistic 1,375.353  1,587.271 1,323.568  1,802.507 1,377.126
HH Fixed Effects X X X X X
Month-of-Year Effects X X X X X
Day-of-Week Effects X X X X X

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce
the estimates in Panel A is based on hourly electricity meter readings in kWh, and temperature quintiles are
calculated from the distribution of hourly average ambient temperature readings. The sample underlying the
estimates in Panel B is based on daily natural gas meter readings (thm), and temperature quintiles are calculated
using the distribution of daily average ambient temperature readings. Based on the values of the rk LM and Wald

F statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Table 10: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Humidity

Quintile
(D (2 (3) 4) )
Quintile 1 ~ Quintile 2 Quintile 3 Quintile 4 Quintile 5
Power Use (kWh or thm)
Panel A: Electricity (kWh)
ATT (W) 0.050 -0.010 -0.021 -0.041%* -0.066%**
(0.048) (0.024) (0.019) (0.018) (0.020)
N 1,379 1,379 1,379 1,379 1,379
NxT 3,313,684 3,333,963 3,255,920 3,239,969 3,278,198
F statistic 45.607 3.514 8.612 4.219 7.804
rk LM statistic 521.960 564.647 595.843 638.333 623.192
rk Wald F statistic 1,763.238  1,860.182 1,910.165 1,944.091 1,612.296
Panel B: Natural Gas (thm)
ATT (§7m) 0.004 -0.010 -0.005 0.047 -0.022
(0.017) (0.025) (0.036) (0.044) (0.067)
N 1,367 1,369 1,369 1,369 1,367
NxT 141,016 133,650 132,648 153,013 116,975
F statistic 0.930 0.188 0.149 14.963 65.458
rk LM statistic 380.444 564.518 647.032 611.390 550.812
rk Wald F statistic 1,356.189  1,740.682  1,908.480 1,522.235 1,306.659
HH Fixed Effects X X X
Month-of-Year Effects X X X
Day-of-Week Effects X X X

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce the
estimates in Panel A is based on hourly electricity meter readings in kWh, and humidity quintiles are calculated
from the distribution of hourly average ambient relative humidity readings. The sample underlying the estimates
in Panel B is based on daily natural gas meter readings (thm), and humidity quintiles are calculated using the
distribution of daily average ambient relative humidity readings. Based on the values of the rk LM and Wald F

statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Table 11: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Heat

Index Quintile

(D (2) (3) 4) (5)
Quintile 1  Quintile 2  Quintile 3  Quintile4  Quintile 5
Power Use (kWh or thm)

Panel A: Electricity (kWh)
ATT (") -0.036 -0.030 -0.026 -0.009 0.009

(0.022) (0.019) (0.019) (0.024) (0.043)
N 1,376 1,379 1,379 1,379 1,378
NxT 3,296,464 3,272,861 3,296,156 3,273,130 3,283,123
F statistic 1.491 1.632 13.865 17.538 24.681
rk LM statistic 367.624 636.517 691.267 604.526 546.840
rk Wald F' statistic 1,381.488  1,927.034  1,955.091 1,883.345 1,770.575
Panel B: Natural Gas (thm)
ATT (") -0.060 -0.004 -0.004 -0.003 0.009

(0.066) (0.044) (0.024) (0.018) (0.015)
N 1,364 1,366 1,369 1,367 1,365
NxT 135,502 136,401 134,876 135,317 135,204
F statistic 18.708 6.519 10.808 12.692 0.289
rk LM statistic 351.296 404.357 586.160 702.841 413.818
rk Wald F statistic 1,364.503  1,468.623  1,403.564 1,797.169 1,406.956
HH Fixed Effects X X X X
Month-of-Year Effects X X X X
Day-of-Week Effects X X X X

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce

the estimates in Panel A is based on hourly electricity meter readings in kWh, and heat index quintiles are cal-

culated from the distribution of hourly average ambient heat index readings. The heat index is calculated using

temperature and humidity readings. See https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml for the
exact formula. The sample underlying the estimates in Panel B is based on daily natural gas meter readings (thm),
and heat index quintiles are calculated using the distribution of daily average ambient heat index readings. Based

on the values of the rk LM and Wald F statistics, we reject the nulls of an under or weakly identified model across

all specifications.
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H.2 Day of Week and Hour of the Day Estimates
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H.3 Price and Peak-Alert Estimates

Table 15: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Price Quintile

(H ) (3) “4) 5
Quintile 1  Quintile 2  Quintile 3  Quintile 4  Quintile 5
Power Use (kWh)
ATT (§Fh) 0.027 -0.002 0.003 -0.007 -0.012

(0.027) (0.020) (0.021) (0.024) (0.026)

N 1,379 1,379 1,379 1,379 1,379
NxT 3,274,085 3,272,108 3,273,626 3,272,248 3,272,504
R? 0.133 0.114 0.096 0.088 0.081
F statistic 692.939 784.327 788.042 719.974 630.113
rk LM statistic 713.547 557.232 514.273 466.017 585.746
rk Wald F statistic 1,827.171 1,849.146  1,798.582  1,651.200 1,938.912
Weather Controls X X X X X
HH Fixed Effects X X X X X
Month-of-Year Effects X X X X X
Day-of-Week Effects X X X X X

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce the
estimates is based on hourly electricity meter readings in kWh. Based on the values of the rk LM and Wald F

statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Table 16: ATT Estimates of the Effect of a Smart Thermostat on Energy Use on Peak Alert Days

(1) 2) 3) “) (%)
CAISO Alert CAISO Alert PG&E Alert PG&E Alert PG&E Alert
Hours Hours w/ Local Days Days: Days:
Media Coverage Off-Peak Hours  Peak Hours
Power Use (kWh)
ATT (§Fh) -0.046 -0.011 -0.103%** -0.073%* -0.116*
(0.052) (0.069) (0.033) (0.029) (0.065)
N 1,378 1,376 1,378 1,378 1,378
NxT 227,005 158,614 475,920 356,940 118,980
R? 0.015 0.019 0.015 0.012 0.016
F statistic 126.639 117.259 236.227 204.697 135.732
rk LM statistic 595.465 630.654 525.434 529.324 531.045
rk Wald F statistic 1,580.882 1,585.741 1,777.016 1,775.353 1,785.294
Weather Controls X X X X X
HH Fixed Effects X X X X X
Day Effects X X X X X
Hour-of-Day Effects X X X X X

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce the
estimates is based on hourly electricity meter readings in kWh. Based on the values of the rk LM and Wald F
statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Figure 21: ATT Estimates of the Effect of a Smart Thermostat on Energy Use on PG&E Peak Alert
Days by Hour of the Day

4 Peak Hours

ATT Effect of a Smart Thermostat

-4
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of the Day

I Recruitment and Enrollment

I.1 Subject Eligibility

Appendix Table 17 summarizes the eligibility requirements for participation in the experiment.
Participants had to own their residence and have central air conditioning with a single thermo-
stat. They also had to have a smart phone and high-speed Internet. Finally, individuals who were
planning to move in the near future were excluded from the experiment.

Table 17: Subject Eligibility Summary

Eligible Not Eligible
Rent or own? Own Rent
Home Type House or Condo Apartment or Other
Phone iPhone or Android Blackberry or Other
# of Thermostats 1 >2
A/C Central Air Box Unit, Fans, Other
Heating Air Vents Baseboard or Other
High-speed Internet? Yes No
Plan to move in next year? No Yes
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I.2 Trial Recruitment and Enrollment Guide
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Introduction

Experimental Trial Information

UTILITY is running an experimental thermostat trial with Opower and Honeywell, offering
eligible customers a free remote-controlled thermostat solution (a thermostat controlled by a
smartphone and web application). The goal of the experiment is to test the energy savings and
customer experience of the thermostat solution. Customers gain a thermostat and app that helps
them save energy, by creating a customized, energy efficient schedule that fits their lifestyle.

For this trial, 1 in 2 qualifying customers will receive the thermostat solution. Customers who
meet the eligibility qualifications must complete the online enrollment process to determine if
they will receive a thermostat or not. At the end of the online enrollment process the system will
randomly flip a coin to determine which customer will receive the remote-controlled thermostat
and which will not. All customers who enroll for a chance to participate are benefiting the trial
(even those who do not receive a thermostat), and it is important that all qualified customers
complete the full enrollment process.

Customers should be encouraged to enroll for a chance to receive this exciting solution, which
allows them to control their thermostat on-the-go. UTILITY, Opower, and Honeywell are grateful
for the time each customer takes to enroll online for a chance to participate, and all customers
should be thanked for their time regardless of the outcome.

Customers should be encouraged to answer all qualification and enrollment questions honestly. If
a customer provides inaccurate information during enrollment it negatively impacts the trial and
the customer will ultimately be turned down for the trial.

Talking Points for Recruitment Events

Initial Communication

Initial communication should be a call to action, provide quick benefits (FREE remote-controlled
thermostat), provide a fun atmosphere and garner attention.

* Do you own an iPhone or an Android? If so, would you be interested in a free thermostat
controlled by your smartphone?

* How would you like to gain better control of your energy use at home? You can control
your thermostat at home from right here! Want to know how?

e Sign-up for a free remote-controlled thermostat, a $500 dollar value and take control of
your energy consumption and improve the comfort of your home.

¢ I know you’re in a hurry but this opportunity will allow you to take control of your
energy use and you’ll always come home to a house at the perfect temperature.

* Save energy while you’re away and stay comfortable while you’re at home, all by using
your smartphone or the web.

* How would you like to control your heating/cooling by your iPhone or Android and

Copyright 2012 by Opower and Honeywell. All rights reserved. 2



through the internet from anywhere in the world?
After Initial Communication

After initial communication, you should be focused on getting the customer more excited about
the offering by providing key information and benefits unique to the opportunity.

*  We are conducting a trial on behalf of UTILITY that allows you to interact with your
heating & cooling system using your smartphone or the web. That means you can control
your home’s comfort at your fingertips from wherever you are. All you need is your
smartphone of the web. Are you ready to take control?

* Did you know that a typical family spends almost half (49%) of its energy cost on heating
and cooling? (Source: Energy Star)-- How would you like to have the opportunity to be
selected for a special trial UTILITY is conducting to provide a limited number of
customers a thermostat controlled by your smartphone? That’s right you can control the
comfort of your home at anytime or any place using your smartphone or the web.

*  How would you like to be one of the lucky UTILITY customers who receives a free
thermostat controlled on-the-go from your smartphone or the web? This is over a $500
value completely free with professional installation and a 1-year warrantee. UTILITY is
conducting this trial to allow customers a unique way to reduce energy use and save
money. The process for signing up only takes a few minutes of your time. Let’s see if you
qualify.

*  Check out this free thermostat controlled by your smartphone. You’ll have complete
control over your comfort, and you can see how your temperature settings stack up
against other participants in the trial.

Overcoming Initial Objections
Objection: “I don’t have time”

* You’ll never come home to a cold house again and sign-up only takes a few minutes.
Objection: “I still don’t have time”

* Okay; here’s how you can see if you qualify and sign-up from home (postcard)
Objection: “I don’t want to give out my personal information”

* You’re information is completely confidential and will be only used to determine if you
qualify for the free thermostat.

Objection: “I’m not interested”

* Here is a free pen, compliments of UTILITY. Have a great day!

Initial Eligibility Screening

Copyright 2012 by Opower and Honeywell. All rights reserved. 3



Do you rent or own your home? Own Rent
What kind of home do you own? Single family, - Apartment
Townhome, - Other
Condo
What kind of phone do you have? - iPhone - Blackberry
- Android - Other
How many thermostats do you have in your One (1) Two (2) or more
home?
How do you cool your home? Central air - Window box unit
- Fans
- Other
What is the main way you heat your home? Air vents - Baseboard
- Other
- None
Are your heating and air conditioning systems Yes No
functional and have you used them the last 6
months?
Do you have high-speed internet access Yes No
(Cable, DSL, satellite, Broadband)?
Do you have an available ethernet port on Yes No
your internet router?
Do you plan to move to a new home in the No Yes
next 12 months?
Will other adults in your household object to No Yes
enrolling in this program?

Customer Does NOT Pass Initial Eligibility Screening

Thank you for your interest, but unfortunately you don’t meet the eligibility requirements
for this trial. However, UTILITY is developing a number of residential energy efficiency
programs that you may qualify for. Please fill out this post card in to enable them to
contact you in the future for other offerings. Thank you and please accept this free pen,
compliments of UTILITY. We appreciate your time!

If you do know someone else who may be interested, please let them know about this free
trial and they can sign-up right away. (Staffer hands the customer a post card.)

Customer Passes Initial Screening

Great! You’ve pre-qualified to participate in the selection process, which only takes a few
minutes. Would you like to learn how the thermostat and app works? (demo)

Let’s get you signed-up and see if you are selected to join the UTILITY Smart
Thermostat Trial, with a free remote- controlled thermostat and professional installation.
The sign-up process just takes a few minutes and we can help you complete it here.

You’ll need your UTILITY account number for enrollment. You can use my phone to
retrieve your utility account number from UTILITY. You will also be asked to provide

Copyright 2012 by Opower and Honeywell. All rights reserved. 4



the last four digits of the Social Security Number of the UTILITY account holder—this
may be you or a housemate. Staffer provides customer phone & contact number (1-888-
743-0011).

Customer is Selected to Join the Trial

Encourage customers to take the first available appointment. Explain that technicians are only in
the area for a limited amount of time.

Congratulations! You’ve been selected to participate in the UTILITY Smart Thermostat
Trial. A customer service representative will contact you with further information about
your free installation. You will receive an email reminder with the date and time of your
installation appointment, but you may want to write it down now, so you don’t forget.

Tell your friends and family to see if they are eligible and sign-up online! (postcard)

Here is a free lens cleaner or smartphone holder for your smartphone, compliments of
UTILITY. We appreciate your time!

You will be contacted within a few days to confirm your eligibility and appointment
time. (Honeywell CSR will conduct a follow-up call to confirm appointment time &
answer any additional questions)

Customer is NOT Selected for the Trial

Thank you for your interest in the Smart Thermostat Trial. Unfortunately, this is currently a trial
so participation cannot be granted for everyone.

Copyright 2012 by Opower and Honeywell. All rights reserved.

In the event the trial is extended, would you like to leave your contact information, which
will only be used to contact you regarding other opportunities to participate in UTILITY
residential trials or programs?

Please accept this free pen, compliments of UTILITY. Have a great day.
Tell your friends and family to see if they are eligible and sign-up! (postcard).

Here is a free lens cleaner or smartphone holder for your smartphone, compliments of
UTILITY. We appreciate your time!



How Online Enrollment Works

If a customer passes the initial qualification screening, direct them to the Opower Web

application to enroll online. Eligible customers have a 1 in 2 chance of being selected to receive

a thermostat.

Enroll online at: https://thermostat.opower.com/

The customer begins by clicking "See if your household qualifies."

Want to experience the | 1 in 2
future of thermostats? Tree thermostat

Slay COMINLADN and idve MOtsry Wit youre

Verifying if the Household Qualifies

In order to verify that they can participate in the program, customers must answer a series of
questions about their home.

On the first verification screen, they are asked to provide the following information:

e Zip code: Qualified zip codes are those within the greater Fresno and Bakersfield areas,

see list provided by Honeywell.
*  Whether they rent or own: Customers must own their own home.

*  What kind of home they live in: Customers can select any option except "other."

*  Whether they plan on moving in the next year: Customers must plan on remaining in the

same home.

*  What kind of phone they have: Customers must have an iPhone or Android phone if the

utility program requires a smartphone.

Copyright 2012 by Opower and Honeywell. All rights reserved.



See if your household qualifies to participate in this program.

3) Tedl us adOUL vour ROULENOIS

If a customer qualifies based on the answers to the questions above, they are asked to provide the
following additional information:

* Number of thermostats: Customers can have only one thermostat.
* Primary cooling system: Customers must have central air.
* Main way they heat their home: Customers must have a gas furnace.

e [f their air conditioning and heat are currently working: Customers must have an
operational air conditioner and heater that they have used in the last 6 months.

Copyright 2012 by Opower and Honeywell. All rights reserved. 7



See if your household qualifies to participate in this program.
(2 of 3) Tell us about your heating and air conditioning.

How many thermostats are in your home?

One Two Three or more

* How do you cool your home?

Central air Window box Fans Other

B o

Heat pump Other

@ What is the main way you heat your home?

N

Gas furnace Baseboard Radiators

U Are your heating and cooling systems functional, and have you used them in the last 6 months?

Yes No

Back

Finally the customer is asked, if they:

Have high-speed Internet access: Customers must have high-speed access.
Have an available Ethernet port on their router: Customers must have an available port.
Are in agreement with the terms and conditions of the program: Customers must agree to

the terms. Terms vary by utility.

See if your household qualifies to participate in this program.

3) Just 8 few more QuesTions

@ D0 yOu Nave 37 IValA0H ETneMeT DO ON yOUr IMSEMGT FOULer
‘ @
- —
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When they complete the final verification screen, they are told if they are eligible to receive an
account. They must meet all of the qualifications to be considered for the program.

If a customer answers any of the qualification questions with a response that makes them
ineligible, they are excluded from the program.

We're sorry!

Your househeld doesn't meet all the requirements for participation In this program.

All program participants must meet the following qualifications

Creating an Account

Customers who are eligible for the program are required to enter the following information to
create an account:

* The email address they will use to access the Web application. Basic validation is
performed to verify that the email address is well-formed.

* A unique password. The password must be at least eight characters long. Passwords must
not be or contain the customer’s name or email address.

* Customers enter the same password again and are prompted to correct the password if it
is not identical in the two password fields.

¢ The full name of the utility account holder exactly as it appears on the utility bill. The
customer enrolling in the program must enter the name of the utility account holder as it
appears on the utility bill, even if they are not the account holder.

* The utility account number exactly as it appears on the utility bill. This includes spaces
or any other characters included in the data.

Customers are prompted to agree to the Opower Terms of Use.
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v) Great! Your household is qualified to participate.

3N 104 15 AD0UT YOUr Gy POUTING 10 S0¢ If YOU JIE SEHCTRT 10 FeCeive 3 Tree THrMOStat X take

mangtes 1

6y, W Can™ QFant ParDORITION 10 Every ROWNO AT Qual™ed. Tha Syilem will 1an00Mily sewdl 5C

Customers submit their account information, and then a new page prompts the customer to check
their email.

Now, please check your email.

8 -: -::-:';::.:t::'.:".‘. OUr EMAN 00ress. PIease Open aNa TICK 0N 11 50 we Can conm

Customers should receive an email message at the address they specified. If the customer does
not receive the email, they have the option to "Resend confirmation" in the Web application. The
email is titled "Your Thermostat," and it will arrive from an @opower.com email address. The
customer may need to check their junk/spam folder for the email.
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Let's make it official

Thanks for creating your thermostat account. As a final step, click

the button below to confirm your account and personalize your
thermostat settings in less than 2 minutes
Button not working? Copy and paste this URL into your browser

er.com/users/confirmation?

hitps://opow

confirmation_token

Confirm my account

The customer must click "Confirm my account" to complete their registration and verify their
email address. If nothing happens when the button is clicked, the customer can copy and paste the
customer-specific URL provided in the email to their Internet browser to confirm the account.

Thermostat Registration

Once the customer has confirmed their account, they are provided with more information about
the program and asked to describe their daily routine.

v) Great! Your thermostat account is confirmed.
Just a couple more steps!

%

Tell us about your delly routine See if you're selected

Qualifying Questions
The customer begins to program their thermostat by providing the following information:

*  Whether multiple people live in their home. Opower tailors the language in the
application to the number of people in the household.
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*  Whether they have pets. If the customer has pets, the default away temperature of the
home is adjusted to a safe temperature for household pets. For homes with pets, the
default away temperature is 82 instead of 85 for cooling and 60 instead of 55 for heating.

* Their mobile phone number. Customers are sent a text message to this number with a
link to the Opower mobile application..

Setting an Initial Schedule

After completing the qualification questions, the customer is prompted to create a personalized
schedule. By default, customers set a schedule for all weekdays and then Saturday and Sunday.

For all weekdays, Saturday, and Sunday, the customer has the following options:

* They can set a schedule for when they typically wake, leave the home, return home, and
go to sleep.

] Describe your daily routine

WeaKIay SCNeaIe m

Use a day-by-day schedule Instead

During the week:

O] S 1 1)

1 get up sround 1 eave The house around 1¢ome home around 1G9 % bed around

Back to Inside my house Continue to Saturdays
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* They can indicate they are home all day and set the time for when they usually wake and
go to sleep.

Describe your daily routine

ﬁ

P00 TEN LS 300UT YOUr TYDICH WeaKoay Use a day-by-day schedule Instead

During the week:

) 1usualy 9ave e nOute.

© = vy nrome

1get up arowna 19010 bed arouna

7-00m v | 11:000m v |

Tl prediclatie

m.mmmm
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* They can indicate their schedule is unpredictable. In this case, they are still asked when
they typically wake and go to sleep.

Describe your daily routine

M

PIa5e 1ol LS 3D0LT YOur typical WeeKoay Use a day-by-day schedule Instead

During the week:

) 1 ususey esve the nowse
@ rmusuanyaznome

@ Tsunpreaciatie

CRay Peate ssUmale when yOu S8 LD 900 GO 10 LD YO SN LTI LAVE MOy Dy L4tUng #TNCe~t lempDeratres T0r tieeping

Beck to Inside my house Continue to Saturdays
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Instead of setting the same schedule for all weekdays, a customer can also create a day-by-day
schedule for each weekday separately. The same schedule options are available on a daily basis.

:J Describe your daily routine

On Mondays:

1 9et up sround

Beck to Insicde my house

Setting Initial Temperatures

Use weekdey schedule

Customers are prompted to set their home and sleep temperatures for heating and cooling. The

default temperatures for these settings are based on the suggested Energy Star settings (ENERGY
STAR® Program Requirements for Residential Climate Controls, Version 1.0 Partner

Commitments, DRAFT 2).
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On the heating page, customers are asked how warm they would like their home to be when they
are home and asleep.

Describe your daily routine

Mesting temperstures m

uic cost you $30 this ves

Back to Sundays Continue to Cooling

If the home temperature is greater than the recommended setting (less efficient), an insight
appears to tell them how much money they will spend during the winter keeping the home at this
higher temperature. If the away temperature is higher than the recommended setting, they are
prompted to try setting the temperature lower since the house will warm up to a comfortable
setting before they wake up.
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On the cooling page, customers are asked how cool they would like their home to be when they
are home and asleep.

Describe your daily routine

Cooing larparatures

When Pm home When Pm asieep

Cost you S$BO this yes

Back to Heating ﬁ

If the home temperature is less than the recommended setting (less efficient), an insight appears
to tell them how much money they’ll spend during the summer keeping the home at this lower
temperature. If the away temperature is lower than the recommended setting, they are prompted
to try setting the temperature higher since the house will cool down to a comfortable setting
before they wake up.
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Installation

After submitting their temperature settings, the customer is randomly selected to be part of the
test or control group.

Please wait a moment while the system randomly
determines if your household has been selected to
participate in this program.

Just & momem

\\l/

”

If they are part of the control group, they will not receive a thermostat. Customers in the control
group may opt to sign up for a waiting list and may receive a thermostat if the program is
expanded.

We're sorry!
Because we're still in the trial phase of this program, we are unable to grant
participation to every household that qualifies

It's not personal Stay tuned
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If they are randomly selected into the test group, they will receive a thermostat and become part
of the program. Customers participating in the test group can schedule an appointment to have
their thermostat installed.

(v) Congratulations! The system has selected your
household to participate in this program.

Schedule your installation appointment below.
A quaified energy sechnician wil come 10 your home 10 Install your new thermostat free of charge
Choose your Installation date Choose a timesiot that works for you

544 PM . 06 44 PM
November 2012 . o y

Doal 56¢ 8n acoointment you tke?
Su Mo Tu We Th Fr Se Don see an appointment you ike

26 28

December 2012 >

Su Mo Tu We Th Fr Se

If none of the times available on the screen are convenient for the customer, they can click "Don't
see an appointment you like?" to see a phone number they can call to schedule the appointment
(1-888-660-5028).

To schedule an installation appointment over the phone please call 1-888-660-5028

Tuesday-Friday 11:30 AM to 8:00 PM PST and Saturday 8:00 AM to 5:00 PM PST

CLOSE
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Once they have selected the date and time for their appointment, they will see a confirmation
screen. This includes information on how to reschedule the appointment and where to download
the mobile application.

Congratulations!

0 App Store

Download the Opower App from the ITunes App Store

The customer will also receive an email confirmation for their appointment and a reminder to
install the mobile application in advance of the appointment.

We'll see you soon!
Your thermostat is scheduled to be installed on

Tuesday, November 06
05:44 PM - 06:44 PM

Don't forget to download the Opower mobile application prior to

your appointment

Download App

Mobile Application Tour

The mobile application tour can be launched at anytime, using the Opower mobile app on the
iPod Touches, and later on the customer’s smartphone. Click on the Settings tab, click “Launch
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tour,” slide through the tour pages, and click “Done” to exit. The tour provides an overview of
some of the main application functions and customer messages.

wil_Verizon 5:22 PM

="M i Verizon 2 -
Settings @ F |

Take a Tour @

Take a Tour

[ Launch tour
[ About Opower Let’s Get Started
Swipe through the following
p— screens to learn about the
[ Send application feedback features of this app.
[ Rate this app

+ or - to adjust the
current temperature

il Verizon 7 5:22 PM

Take a Tour ® Take a Tour @ Take a Tour ®

It's 71° at home. It will be 73° in
about 14 minutes.

Tap
to edit today’s
schedule

"I'm HOME

( until

- 11:00 PM

Take a Tour Take a Tour @

Opower
recommended
setpoint

Slide

to update where you are:
Away, Home or Asleep

Average Av_erage
setpoint of all [§ setpoint of the
thermostat most efficient
users 20% of users

Answering Customer FAQs

This section will help you answer customer questions about the program, mobile and Web
applications, and thermostat. A full set of customer FAQs can be found at
https://thermostat.opower.com/faq.
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What is this thermostat program?

Opower and Honeywell have partnered to create a smart thermostat solution, which allows utility
customers to program and monitor heating and cooling energy usage, not just from the thermostat
itself, but also via Internet-connected devices like smartphones. This solution also gives you the
ability to create optimal thermostat schedules that fit your lifestyle and provides customized
recommendations to help you trim your energy bills.

How can I save?

A programmable thermostat can help reduce your heating and cooling costs. You can save all
year long if you ensure your thermostat is set at the optimum program settings that match your
lifestyle. You can manipulate your temperature setting and conserve energy, even while you are
away, through the use of the Internet or your smartphone. Setting your programmable thermostat
to the highest comfortable temperature in the summer and lowest comfortable temperature in the
winter can help you reduce your energy bill.

What are the estimated savings based on?

The estimated costs and savings calculations are based on average heating and air conditioning
usage and utility billing rates in your area. These are only estimations and are not a guarantee of
savings from your utility company.

What other benefits does this program provide?

This thermostat program also benefits the community by helping to educate customers about
energy use and energy efficiency goals. The energy customers save will not only help the
environment, but also help reduce the need for new power plants and the occurrence of power
outages.

Are there any safety or privacy concerns I should be aware of related to this thermostat
program?

The Honeywell VisionPro thermostat used for this program was rigorously tested prior to being
installed in customers’ homes. These devices go through numerous quality control checks by
multiple parties, to ensure they meet a high level of customer safety, reliability, and satisfaction.

It is also our top priority to protect our customers' information. We apply the same privacy
protection standards to all data collected by the company from customers. We treat each
customer's personal information and data as confidential, consistent with all regulatory
requirements, including those established by the Public Utilities Commission. Therefore, be
assured that your information is kept private.

Can I get this device for my other properties and/or business?

The smart thermostat program is only available for residential use at this time. Only a single
thermostat is available for each program participant.

How many devices can I access the applications from?

Only a single wall-mounted thermostat is available for each program participant. You can install
and access the mobile application from as many smartphones as you would like, but the
application must be registered with the same username and password. Similarly, you can use the
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Web application from any supported web browser on any computer. If more than one member of
your household uses the application at the same time, the changes are preserved for the last
person who saves their changes.

Can people see if I am home or not?

No. We apply the same privacy protection to this data as other all other data collected by the
company for customers. The only way someone can see your status and schedule is if you give
them your login credentials to the web or smartphone application.

If I work from home or have a severe illness for which I have special temperature
needs, can I still benefit from this program?

You will always have control of your thermostat, so you can set safe and comfortable
temperatures that are suitable for your lifestyle. An easy way to save energy is to lower your
heating temperatures and raise your cooling temperatures when you are away. Depending on your
personal needs, you may also be able to use more efficient temperatures while you are asleep.

How safe is the program? Can anyone hack into the system?

It is our top priority to protect our customers' information. Our system employs industry-standard
defense mechanisms against brute-force attacks, code injection, and other malicious activity. We
apply the same privacy protection standards to all data collected by the company from customers.
We treat each customer's personal information and data as confidential, consistent with all
regulatory requirements, including those established by the Public Utilities Commission.
Therefore, be assured that your information is kept private.

What smartphones support the mobile application?

The mobile application is currently supported on the Apple iPhone 3GS or later, running 10S 4.3
or later, and Android phones running 2.2 or above. To locate your operating system on your
iPhone, open the Settings app, click on “About,” and see what “Version” your iPhone is running
(needs to be 4.3 or above). To locate your operating system on your Android, open the Settings
app, click on “About phone,” and see what “Android version” your phone is running (needs to be
2.2 or above).

How do I make a one-time change to my schedule?

You can use the “Thermostat” page of the mobile application or the “ My Thermostat” page of
the Web application to manually change your temperature, change your current state (away,
home, asleep), or set a new time to come home, wake, or go to sleep. On the thermostat on the
wall, you can also manually change your temperature.

How can I change my email address and/or password?

Open the Web application, and then select “My account” to change your password or email
address.

I now have three ways to change my thermostat. How are they different?

You can use your thermostat to manually change temperatures, turn on and off your heating and
AC, and control your fan. The Web application has the same functionality as the thermostat and
also allows you to register for an account, set a vacation schedule, and change your account
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settings, primary schedule, default temperatures, state (home, away, asleep), and schedule for
today. The mobile application has all of the functionality of the thermostat and Web application,
plus it allows you to compare your temperature settings, set a passcode, and set and receive
notifications.

Which browsers are supported for the Web application?

The current major release and previous major release of the four desktop browsers with the
largest market share are supported. Currently, this means Internet Explorer, Safari, Mozilla
Firefox, and Google Chrome are supported.

Will my house really be comfortable enough when I get home?

Yes. You just set the time you will return home and your thermostat does the rest. Your home
will be heated or cooled for you before you return home after being away or on vacation. Your
smart thermostat learns the amount of time it takes to heat or cool your house before you arrive,
based on the actual temperature in your home and past usage.

Can I enroll in the program using my smartphone?

You can only enroll in the program using the Web application. If you are selected for the
program, you will receive information about how to install the mobile application.
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