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Abstract

We estimate the causal impact smart thermostats have on energy use using data from a field
experiment in which treated households were randomized into free installation of a smart ther-
mostat. We combine this experimental data with 18 months of high-frequency data on house-
hold energy consumption in the form of more than 16 million hourly electricity use records
and almost 700 thousand daily observations of natural gas consumption. We model the effect
of a smart thermostat on energy consumption using a difference-in-differences instrumental
variables (DDIV) specification. In contrast to advertised savings based on engineering mod-
els, we find no evidence that smart thermostats have a statistically or economically significant
effect on energy use. This result is robust to the inclusion of numerous controls and when the
model is estimated on various subsamples (e.g., by hour). We explore potential mechanisms
using almost four million observations of system events including user interactions with their
smart thermostat. Results indicate that user behavior dampens energy savings and explains the
discrepancy between estimates from engineering models and those from the field.
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1 Introduction

According to the Energy Information Administration (EIA), American households consume an
average of 166.3 million British thermal units (BTU) of energy per year (EIA, 2019a), and the
average single-family home owner spends just over $2,200 on energy annually (EIA, 2018). In
total, the production of that residential energy results in the emission of over one billion metric
tons of carbon dioxide into the atmosphere each year (EIA, 2019b).! These high private and
social costs have led to substantial interest in smart technologies that reduce energy use without
reducing consumer utility by increasing efficiency. Given that the largest share (almost 40%) of
residential energy use goes to heating and cooling the home (EIA, 2019a), smart thermostats are
an increasingly popular example of such a technology.?

Smart thermostats allow individuals to program temperature setpoint schedules and adjust set-
tings remotely via a smart phone application. While producers of these devices promise consumers
substantial savings on their home heating and cooling bills, projected savings are often based on
engineering studies that fail to account for how people actually use their smart thermostat or rely
upon non-experimental data that fails to estimate the causal relationship between smart technolo-
gies and household energy use (Peffer et al., 2011; Peffer et al., 2013).3 Thus, the true impact of
smart thermostats on energy usage “in the field” is uncertain.

In order to determine the causal impact that smart thermostats have on home energy usage, we
examine data from a field experiment conducted by Opower and Honeywell in conjunction with
Pacific Gas and Electric (PG&E) — the second largest utility in California. As part of the experi-
ment, the 1,379 households that volunteered to participate in the study were randomized into either
a treatment group who received free installation of a Honeywell two-way programmable thermostat
linked to an Opower platform or a control group that received neither.* We combine this house-

I'This is roughly 20% of the total annual carbon dioxide pollution due to the production of energy.

2Mordor Intelligence estimates that the smart thermostat market was worth $689.8 million in 2018 (Mordor Intel-
ligence, 2019).

3For instance, the Nest smart thermostat website advertises a 10 to 12% savings on heating and a 15% savings on
cooling costs. The ecobee smart thermostat touts a savings of “up to 23%” on heating and cooling costs. Honeywell
has a savings calculator that reports annual savings by location based on estimates of local energy costs. Their website
cautions, “The savings in [these] calculations are based on schedules you may set up by programming your thermo-
stat.... The demonstration in this calculation uses typical events people may use to schedule/program their thermostats.
Your results may vary depending on your dynamic lifestyle.”

4In addition to the ability to schedule permanent temperature setpoints and interact with the thermostat remotely,
the smart thermostat given to households in our experiment provided households with a social norm framing of their
setpoint choices. Although not in the context of smart technologies, extensive work has shown the responsiveness
of household energy consumption to social norm framing (e.g., Allcott, 2011; Ferraro and Price, 2013; Ayres et al.,
2012; Costa and Kahn, 2013; Allcott and Rogers, 2014; Dolan and Metcalfe, 2015). Given this finding and the Peffer
et al. (2013) result that individuals do not use their smart thermostats as intended, this feature should provide the best
chance for a smart thermostat to reduce energy consumption. Additionally, some form of framing is an increasingly
common feature of more modern smart thermostats.



hold thermostat technology data with high-frequency data on household energy consumption over
an 18-month period in the form of more than 16 million hourly electricity use records and almost
700 thousand daily observations of natural gas consumption. We model the effect of thermostat
technology on household energy consumption using a difference-in-differences instrumental vari-
ables (DDIV) specification where we use assignment to treatment as the instrument for installation
of the thermostat. The coefficient of interest measures the differential change in energy use across
pre- and post-intervention periods for treated versus control households. Thus model allows us to
identify the causal impact of a smart thermostat on energy use.’

Across numerous specifications, we find that smart thermostats have neither a statistically nor
economically significant effect on energy use. This result is robust to the inclusion of controls for
weather conditions and a battery of household, location, and time effects. To investigate whether
this aggregate result masks significant, but offsetting, effects, we estimate the model on subsamples
by day of the week, hour of the day, and ambient temperature/humidity quintiles. We find no
evidence of heterogeneous treatment effects.

In order to explore potential mechanisms that would explain this null result, we rely on almost
four million observations of heating, ventilation, and air conditioning (HVAC) system activity
and user interactions with their smart thermostat in the form of scheduled temperature setpoints,
temporary overrides, and HVAC system events. We first provide descriptive evidence that users
do take advantage of the smart features of their devices by showing that they frequently sched-
ule permanent setpoints, the pattern of those setpoints across hours of the day is intuitive, and
the temperatures that they set are in line with Environmental Protection Administration (EPA)
energy-efficiency guidelines. We then establish that users frequently override scheduled tempera-
ture setpoints, and when they do, override settings are less efficient than their previously scheduled
counterparts. To more formally test the hypothesis that user behavior explains the discrepancy
between the decrease in energy use purported by the engineering studies and our experimental es-
timates, we categorize smart thermostat households into flexible, energy-efficiency type categories
based on their relative permanent setpoint and temporary override behavior. We match these cat-
egories to our experimental, energy use data, interact energy-efficiency type with an indicator for
treatment, and estimate difference-in-differences intention-to-treat (DDITT) models.® Estimates
indicate that some high-efficiency type users do realize significant savings by installing a smart
thermostat, but that human behavior explains the discrepancy between engineering estimates and
our null experimental results. Our findings suggests that engineering models fail to adequately
incorporate how people actually use smart technologies, thus severely limiting the usefulness of

3Qur treatment is likely to result in heterogeneous treatment effects, as evidenced by the fact that not all subjects
who were randomized into the treatment group ultimately installed a smart thermostat in their home. Under the
assumptions of instrument exogeneity and one-sided noncompliance (although some households in treatment group
do not take-up the treatment, no households in the control group install a smart thermostat), our estimates can be
interpreted as the average treatment effect on the treated (ATT) of a smart thermostat (Cornelissen et al., 2016). We
more formally discuss identification and provide evidence based on an external dataset that one-sided noncompliance
is a reasonable assumption in Section 3.2.

%We estimate DDITT models instead of DDIV models because our experiment did not (and could not) stratify
households by ex-post energy-efficiency type, so we do not have valid instruments for type.



their estimates.

We make several contributions to the literature. First, while there has been considerable re-
search on smart grid investments (Joskow, 2012), much less work has been done exploring the
impact of smart technologies on residential energy use. Initial assessments of these technologies
have focused on changes in average energy use induced by in-home displays of real-time energy
price or quantity information (see, e.g., Faruqui and Sergici, 2010; Jessoe and Rapson, 2014; Al-
berini et al., 2013). 7

Second, our results have important policy implications as there are both government and in-
dustry funded subsidies of smart technologies. Between 2009 and 2014, the Department of Energy
(DOE) invested $7.9 billion in smart technologies under the Smart Grid Investment Grant (SGIG)
program (DOE, 2016).8 Additionally, the joint EPA and DOE ENERGY STAR program certifies
the efficacy of smart thermostats. The program partners with 17 utility companies to sponsor re-
bates for purchases of smart thermostats. In 20 states, over half of all households are eligible for a
smart thermostat rebate, and in the most generous case, all of the residents in Nevada are eligible
to receive a smart thermostat for free (Bloomberg New Energy Finance, 2019). Given the cur-
rent information available, energy producers and policymakers alike are subsidizing these devices
based on misleading information with funds that would be better spent on more effective policy
interventions.

The remainder of this study is organized as follows: In Section 2 we describe the details of the
randomized control trial (RCT), the sample of households in the study, and our data. The following
section formalizes our empirical specification. Section 4 presents our model estimates, and Section
5 explores the mechanisms that drive our findings. The final section concludes.

2 Experimental Design

2.1 Smart Thermostat

The intervention in our field experiment occurs when a given household’s existing (dumb) thermo-
stat is replaced by a smart device.” Smart thermostats are designed to increase consumer utility
by improving the efficiency of the home’s HVAC system and reducing adjustment costs. To these
ends, the device in our experiment has two key features common to most smart thermostats. First,
the thermostat allows the user to program an extensive schedule of permanent temperature setpoints
for each day of the week. Second, the user can either interact with the device directly or remotely

"Harding and Lamarche (2016) is a notable exception. The authors consider the effect of technologies that automate
temperature setpoint changes to dynamic pricing.

8While more than two-thirds of these investments went towards outfitting households with smart meters and com-
munication systems that allow utilities to integrate real-time market conditions into household consumption decisions
via dynamic pricing plans or demand response messaging, a complementary set of investments targeted the develop-
ment and dissemination of technologies such as smart thermostats that allow individuals to remotely communicate
with their appliance and HVAC system.

9Specifically, Opower/Honeywell installed a Honeywell Z-Wave Touchscreen Thermostat that communicates with
a website portal and smartphone app designed and hosted by Opower.



via a web portal or smartphone app. Both lower the cost of adjusting temperature settings. '°

While the effect of these features on energy usage is theoretically ambiguous depending the
schedule the user sets and how she interacts with the device, there are several additional features
of the thermostat used in our experiment that encourage users to make changes that reduce energy
consumption. First, when choosing setpoints, users receive messages that compare their settings to
those of similar households. Analogous to the social comparison module studied in Allcott (2011),
the thermostat interface presents: (i) descriptive norms with information on peer setpoint choices
and (ii) injunctive norms with efficiency ratings of setpoints. Second, the thermostat app interface
is designed to facilitate toggling to a less energy intensive setting when the user leaves home and
toggling it back to the previous setting when the user returns. Finally, when a user overrides a
permanent setpoint to make a temporary change that is more energy efficient than the scheduled
one, she is prompted by a query asking if she wants to make this more energy efficient setting
permanent. 1

2.2 Experiment

Figure 1 illustrates the execution of the field experiment. It describes the assignment of households
to treatment and control groups, as well as the subsequent installation decisions of treatment house-
holds. Potential subjects were recruited in public places (e.g., malls, markets, and fes‘tivals).12 A
total of 1,379 eligible households agreed to participate in the study and were randomized into either
a treatment or control group.!3 After group assignment, the experimenter had no further contact
with the 690 control households. The 689 households assigned to the treatment group were of-
fered the smart thermostat described in the previous section and installation at no cost. The smart
thermostat was successfully installed in 73% of homes in the treatment group. Of the remain-
ing treatment homes, 19% percent declined, and 8% had complications that prevented installation
(e.g., compatibility issues).

10Appendix Section A provides a more detailed description of the device. Panel (a) of Appendix Figure 16 displays
the thermostat and associated applications. Panel (b) shows a screen-shot of scheduling using the smartphone app.

T Appendix Figure 17 highlights features of the smart thermostat. Panel (a) illustrates the social norm framing
displayed when households choose setpoints. Panel (b) shows how households can remotely toggle the thermostat in
response to leaving and returning home via a smartphone or personal computer.

12To be eligible, an individual had to own her residence and have central air conditioning, a smart phone, and high-
speed Internet. See Appendix Section D.1 for a summary of the eligibility requirements. For more information on
canvassing, see Appendix Section D.2 for the original recruitment and enrollment guide.

13 All household counts in this section are based on the households for which we observe electricity consumption.
There are 1,379 unique households in the electricity sample, 1,369 unique households in the natural gas sample,
and 1,385 unique households across both samples. Stated another way, we observe 16 households with electricity
consumption data, but not natural gas information and another six households that consume natural gas, but for which
we have no electricity consumption information.



Figure 1: Sample Randomization
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Figure 2 plots the cumulative density function (CDF) of the difference in time between as-
signment and installation dates that illustrates how long it takes households in the treated group
to install the smart thermostat (conditional on eventual installation of the smart thermostat). Most
households had the smart thermostat installed shortly after being assigned to the treatment group:
50% of households had their thermostat installed within 5 days, and 95% had it installed within 30
days.

Subjects were recruited in two waves. The first wave of recruitment took place across four
counties in Northern California from July through October of 2012. The second wave of subjects
were recruited from December of 2012 to February of 2013 in three Central California counties.!
Figure 3 depicts the locations of homes in the experiment and provides visual evidence that treat-

ment and control groups are spatially balanced across locations. !>

2.3 Energy Data

All households in the study were equipped with smart meters that enabled PG&E to record household-
level data on hourly electricity use and daily natural gas consumption. The quantity of electricity
consumed is measured in kilowatt hours (kWh), and the unit of measurement for natural gas is a
therm (thm).!® As we cannot observe temperature setpoints directly for control households with a
traditional thermostat, and energy is the policy-relevant good, these measures are the main outcome
variables in our analyses. In total, we observe an average of 11,908 hourly electricity use decisions
for the 1,379 households in electricity sample and 495 natural gas use decisions for the 1,369
households in the natural gas sample over an 18 month period from July 2012 through December
2013.

“Northern California wave subjects were recruited from the greater San Francisco/Sacramento area (Contra Costa,
San Joaquin, Solano, and Yolo counties). The Central California wave households are located in and around Fresno
and Bakersfield (Fresno, Kern, and Madera counties).

ISWe formally test balance in Section 2.6 and fail to reject the null of spatial balance in the counties where house-
holds are located.

16A therm is a unit of heat energy equivalent to 100,000 BTUs.
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Figure 2: Conditional Distribution of Time from Assignment to Installation
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2.4 Timing

Figure 4 presents three visual depictions of important timing issues associated with the experiment
and data. Panel (a) is a timeline that illustrates the temporal relationship between the two waves of
subject recruitment and the the period over which we observe energy data. The red line indicates
the range of time during which individuals were recruited in Northern California, and the blue line
depicts the Central California wave of recruitment. The black line is the span of time over which
we observe energy data.
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Figure 4: Timing
Energy Use Data
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Panel (b) of Figure 4 plots the flow of households into the treatment and control groups over
time. Importantly, the subfigure shows that treatment and control households are temporally bal-
anced, as they were assigned at similar rates over time.!” Unfortunately, due to an error in the
energy data collection process, we only observe energy readings starting on the first day of recruit-
ment in Northern California. Panel (c) illustrates the effect of this issue by plotting the number of
electricity readings per day for each wave relative to event time (where assignment to the treatment
or control group occurs at time zero).'® The figure shows that we do not observe a substantial pre-
period for all households in the Northern California recruitment wave, but we do for the Central
California wave. While the model estimates reported in Section 4 are based on the full sample,
we also report results separately by wave in Appendix Section C.1 to account for this issue. The
subsample estimates are not qualitatively different to those based on the full sample.

17We formally test balance in Section 2.6 and fail to reject the null of temporal balance in the month of assignment
to experimental group.
18Plotting an analogous graph for natural gas readings results in the same the same pattern.



2.5 Additional Data
2.5.1 External Data

We supplement the main experimental dataset with information from several external sources and
additional data collected as part of the experiment. First, we compile hourly temperature, humidity,
and heat index readings for each county in the study from the National Oceanic and Atmospheric
Administration (NOAA).'® Figure 5 summarizes the outdoor temperatures households face across
the different counties in our sample by plotting time series of the minimum and maximum daily
ambient temperatures over the sample period. The figure highlights two facts that inform our model
specification. First, despite our sample being drawn from a temperate part of the country, there is
substantial seasonal (within-county) variation in the NOAA data. Temperatures in the sample
range from below freezing to well over 100 degrees Fahrenheit. Summers are hot and require the
use of air conditioning to ensure comfortable indoor temperatures. While the rest of the year is
more moderate, there are many days cold enough to necessitate home heating. Thus, we estimate
separate models of the effect of a smart thermostat on two energy sources: electricity (the energy
source used for cooling) and natural gas (the predominate energy source for heating). Additionally,
as is born out in Table 1, there is both between-county and daily variation in temperatures. We
include hourly outdoor temperature and humidity measures, as well as location and time effects,
as controls to address concerns that ambient weather fluctuations affect our results.

19We are missing values for 0.09% of the temperature and 0.5% of the humidity observations in the sample. We
interpolate these missing values using the predicted values from separate regressions of the given weather variable on
location, day, and hour fixed effects. We calculate the heat index from the temperature and humidity readings (see:
https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml for the formula).

10
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Figure 5: Minimum and Maximum Daily Outdoor Temperatures (°F) by County
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Table 1: Daily Outdoor Temperature (°F) Summary Statistics
Between Within

Variable Mean Std. Dev. Std. Dev. Std. Dev. Min.  Max.
Mean Daily Temp. 63.70 13.06 3.20 12.71 32.63 96.04
Minimum Daily Temp. 51.34 11.55 3.43 11.10 19.00 85.00
Maximum Daily Temp. 77.52 15.23 2.58 15.05 43.00 110.00
N 7
NxT 3,605

Second, since electricity is produced from many sources with different production and exter-
nal costs, we supplement the household electricity use measure with data on the average hourly
real-time price of electricity from the California Independent System Operator (CAISO).?’ By
combining these data sources, we are able to construct a household-specific measure of the social

20The real-time market for electricity in California clears every five minutes. We use this data to calculate the
average price each hour. A similar measure is not available for natural gas prices.

11



marginal cost of producing the electricity the household uses each hour.”! We use this measure to
test whether smart thermostats have a differential effect on usage during peak load times when cost
of electricity production to society is the greatest. Figure 6 plots the mean spot price by decile to
illustrate the variation in production and social costs that exists in our data.

Figure 6: Average CAISO Spot Price by Decile of Price
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2.5.2 Internal Data

In addition to the external data we collect, we also observe a high-frequency, exact-time log of
3,967,558 HVAC system events, including user interactions with their smart thermostat, from 365
households. The unbalanced panel dataset spans from July 2012 to January 2013, and Figure 7
illustrates the number of households observed by calendar date. Recruitment and installation of

2 California instituted a cap-and-trade carbon emissions program in the summer of 2012, so the price of electricity
on the state’s wholesale market reflects both the marginal cost of production and the prevailing market price for
emissions as reflected in the price of carbon permits. The extent to which electricity prices reflect true social costs
depends on whether regulators in California issued the socially optimal number of permits. If allowances exceed this
level, then the prevailing permit price is less than the external cost and electricity prices are a lower bound on social

marginal costs.

12



smart thermostats first began in Northern California in July of 2012, whereas those in Central
California began in December of 2012. Since this dataset is truncated in January of 2013, the
majority of the cross-sectional units in this dataset are homes from Northern California, while
roughly 5% of the households in the data are from Central California.

Figure 7: Number of Households Observed in Events Data by Date
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The system events and user interactions we observe include ambient temperature, HVAC state,
and heating/cooling setpoints (which we classify into permanent setpoints and temporary over-
rides).?> We aggregate these measures to hour-level observations. Table 2 summarizes the data.
The table shows that while there are more observations from the Northern California wave of the

Z2Permanent setpoints are thermostat temperature settings previously scheduled to occur automatically at specific
times on a periodic basis. Temporary overrides are changes to the current setpoint which result from a concurrent
interaction with the thermostat. We do not actually observe whether system temperature changes are permanent
setpoints or temporary overrides. Appendix Figure 18 informs our approach to classifying setpoints and overrides.
Panel (a) plots the density of the second of the minute at which temperature changes take place. The density is roughly
uniform with a probability of about 0.70 across all seconds, save for a large increase in the probability of changes
occurring at :00 through :02 (and to a lesser extent :03) seconds of the minute. Since we would expect temporary
overrides to occur uniformly across seconds of the minute, we code temperature changes occurring at less than :03
seconds of the minute as permanent setpoints and all other temperature changes as temporary overrides. Panel (b)
plots the density of permanent setpoints (as determined by our classification rule) by minute of the hour. Consistent
with our priors, users schedule most setpoints on the hour or half hour (and to a lesser extent, at :15 and :45 minutes
past the hour). This is both a finding and a confirmation of the validity of our classification rule.

13



experiment, settings in the two locations are remarkably similar.??

Finally, Opower and Honeywell conducted an online survey to collect baseline information on
both treatment and control households in the experiment. We do not use these time-invariant house-
hold characteristics in our main analysis because they are redundant to household fixed effects, but
we use them to test the validity of Opower and Honeywell’s randomization process.

2.6 Balance

To test for balance, we estimate a linear probability model with an indicator for assignment to
treatment as the dependent variable. Table 3 reports estimates from that model that summarize the
results of our balance tests. Column (1) reports estimates based on our full sample of households,
and the estimates in Columns (2) and (3) are from models estimated on subsamples by wave. The
reported F-statistics test the null hypothesis that all parameters in the given model are jointly equal
to zero. Consistent with an appropriate randomization process, we fail to reject the null in all three
models and find that control and treatment households are statistically balanced for all outcomes.

The significance of each coefficient estimate provides an additional hypothesis test of balance.
The lack of significance for all but two of the reported coefficient estimates indicates that house-
holds are balanced across all individual measures, save for mean pre-period electricity use. The
significant Mean (kWh) estimate in Column (1) indicates that treatment households used 4.5% less
electricity per hour in the pre-period on average. The lack of balance is unlikely to be due to poor
randomization for multiple reasons. First, energy use was not known at the time of randomization.
Second, the comparable Mean (kWh) estimates in Columns (2) and (3) indicate that this effect is
driven by the Northern California wave of the experiment where pre-period durations are limited
for some households. Finally, the Mean (thm) estimates from all three models indicate that mean
pre-period natural gas use is balanced across experimental groups. Regardless, out of an abundance
of caution, we estimate DD models to control for potential imbalance.

2.7 Descriptive Analysis

To illustrate basic patterns in the raw data and the effect of the installation of a smart thermostat
on energy use, Figure 8 plots mean energy consumption against event time (days before/after the
installation of a smart thermostat) by wave. Panel (a) displays electricity use, and Panel (b) illus-
trates the patterns in natural gas consumption. The figure does not suggest that smart thermostats
have a large effect on energy use, but the raw data is too noisy to be visually conclusive.”* For
this reason, we develop empirical models that allow us to include additional controls that mitigate
residual variation in the raw data and formally test for statistically significance.

23 Average ambient temperatures are higher in Northern than Central California because of seasonal variation. The
Northern California panel spans July through January, whereas the Central California panel runs from December
through January.

2#For instance, the seasonal effects of summer for electricity use and winter for natural gas can be seen in the
patterns in the data.

14
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Table 3: Balance Table

(1) (2) (3)
All Waves Wave 1: N. CA  Wave 2: C. CA
Treatment Treatment Treatment
Variable Indicator Indicator Indicator
Household Characteristics
Family in the Household Indicator 0.026 -0.026 0.085
(0.053) (0.071) (0.080)
Pets in the Household Indicator 0.015 0.020 0.008
(0.029) (0.038) (0.045)
HER Subject Indicator 0.019 0.002 0.045
(0.031) (0.040) (0.049)
HER Recipient Indicator 0.007 -0.026 0.062
(0.039) (0.049) (0.063)
Home Characteristics
Multi-Family Home Indicator -0.019 -0.024 0.039
(0.080) (0.091) (0.166)
Year Home Built 0.000 -0.001 0.001
(0.001) (0.001) (0.001)
Size of Home (Sq. Ft.) 0.000 0.000 0.000
(0.000) (0.000) (0.000)
Pool Indicator 0.001 0.045 -0.079
(0.034) (0.044) (0.053)
Electric Heat Indicator 0.015 -0.059 0.126
(0.095) (0.131) (0.140)
Pre-Period Energy Use
Mean (kWh) -0.045%* -0.057** -0.003
(0.024) (0.028) (0.048)
Mean (thm) -0.024 -0.008 -0.046
(0.031) (0.048) (0.040)
N 1,385 821 564
R? 0.013 0.019 0.021
F 0.731 0.822 0.687

Notes: Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
The table reports linear probability model estimates of the probability of assignment to treat-
ment. Models also include indicators for month and county of recruitment, as well as indicators
for missing year built, home size, and heating type data. All omitted coefficient estimates are
statistically insignificant. The F-statistic tests the null hypothesis that all parameters are jointly

equal to zero. We fail to reject the null in all three models.
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Mean Usage (kWh)

Mean Usage (thm)

Figure 8: Average Energy Use by Experimental Status and Wave
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Only means based on 30 or more homes per day are included in the figure.
(a) Electricity
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Only means based on 30 or more homes per day are included in the figure.

(b) Natural Gas
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3 Empirical Model

Our field experiment randomizes receipt of a smart thermostat among eligible applicants. We
observe a long time series of household-level energy use for treatment and control groups before
and after experimental assignment. Both motivate our empirical strategy. Given the potential pre-
period imbalance in electricity use discussed in Section 2.6, we estimate difference-in-differences
(DD) models. Given the potential for self selection after randomization, we augment our DD
model with instrumental variables (IV) model techniques. We begin by formalizing our model
specification, then discuss identification issues.

3.1 Model Specification

We begin by modeling the effect of a smart thermostat on household i’s consumption of energy
type j €{electricity, natural gas} in time period 7 (e},) using a DD model:

el = o + B/ +V/SiP + X8 +ul, (1)

where S; is an indicator equal to one if household i installs a smart thermostat, F; is an indicator for
post-assignment status in time period ¢, Xj; is a vector of controls, Ocij is a household fixed effect, Btj
is a vector of time effects, and ul]t is a household/time varying unobservable.> We cluster standard
errors at the household level to account for serial correlation (Bertrand et al., 2004) and estimate
the model separately for each energy type. When j denotes electricity, energy is measured in kWh
and the time period is an hour. If j denotes natural gas, the energy unit is a therm and observations
are recorded daily.

Our parameter of interest is ¥/, which measures the differential change in energy use across
pre- and post-intervention periods for smart relative to traditional thermostat households. This
specification implicitly assumes that smart thermostats have a constant effect for all households.
Given that individuals in our treatment sample are each optimizing over their household’s expected
energy savings and installation costs when deciding whether or not to follow through on installing
smart thermostat, our treatment is likely to result in heterogeneous effects and Roy (1951) selec-
tion on gains. Consistent with this underlying model of behavior, there is incomplete installation
compliance among the treated households in our experiment (see Figure 1). To address concerns
of bias from self selection after randomization, we estimate a DDIV model that uses our random-
ization as an instrument for the installation of a smart thermostat. Formally, we estimate }/ using

. . . . /
two-stage least squares (2SLS) methods with E [Z.’ u! } = 0, where Z] = (ai’ B/ ,TiPt,Xi,> , and

it

25If the randomization in our experiment is valid, our coefficient of interest is identified regardless of whether
or not we include household fixed effects (Otij ), time effects (B/), or additional controls (X;;). Thus, we begin by
estimating a basic specification of the model without any additional covariates that replaces o/ with o/S; and B with
ﬁj P;. Subsequent specifications add controls for the weather (which cannot be randomized a priori), household fixed
effects, and various time effects to demonstrate robustness and to improve the efficiency of our estimates. Results are
qualitatively similar across all specifications.
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T; is an indicator for household i’s treatment status in our experiment.®

3.2 Identification

If our instrument is relevant and valid, and there is one-sided noncompliance in our experiment,
our DDIV coefficient of interest, }/j , identifies the ATT of a smart thermostat (Cornelissen et al.,
2016).%” This is the average impact of a smart thermostat on the energy use of households that
install one.?8

We provide evidence that our experimental design satisfies the first two of these requirements
(instrument relevance and validity) and that the third (one-sided noncompliance) is a reasonable
assumption.?® First, instrument relevance requires that assignment to treatment affects the proba-
bility that a household installs a smart thermostat. We report the first-stage F' statistics with all of
our results. As one would expect of a field experiment, we always easily reject the null of weak
instruments.

Second, the instrument validity assumption in a DDIV model can be thought of as two separate
conditions (Hudson et al., 2017). The first is the traditional IV assumption that the instrument
is exogenous and the only way assignment to the treatment group affects energy use is through
the installation of a smart thermostat. The second is the assumption implicit in all DD analyses
that post-period randomization does not affect the pre-period values of outcomes (energy use)
or treatment (smart thermostat installation). Both assumptions are satisfied by the nature of our
experiment: households are randomly assigned to a treatment or control group. Assignment occurs
both (shortly) after the household first interacts with the experimenter and after the household’s
pre-period energy use decisions have been made.*’

Finally, if there is two-sided noncompliance in our experiment, our estimates will be con-
founded by substitution bias (Heckman and Smith, 1995). This is a cause for concern to the extent
that “the need for treatment under question is widely acknowledged and there is competition over
implementation” (Ito, 2007). This is not the case in our context as smart thermostat technology was
in its infancy at the time of our study. Using data from the EIA’s Residential Energy Consumption

26Equation 1 is the second-stage equation, and the first stage is modeled as

SiP = 60! + &/ + MVTiP + Xy ! +w),. )

27In our context, one-sided noncompliance means that while some households randomized into treatment do not
install a smart thermostat, no households in the control group install one.

ZInstead, we can replace S; in Equation 1 with 7; to recover the ITT estimate of y/. This is an estimate of the
average effect of being randomized into the treatment group in our experiment. We estimate DDITT models in Section
5.5 as we do not observe additional instruments for household energy-efficiency types. Alternatively, we can relax the
one-sided noncompliance assumption to one of monotonicity (or uniformity): the experiment makes all households in
the treatment group more (or less) likely to get a smart thermostat than they would have been otherwise. Under this
alternative assumption, the DDIV specification recovers the LATE estimate of 1/ (Imbens and Angrist, 1994). This is
an estimate of the average impact of a smart thermostat on the energy consumption of households that were induced
to install one by our experiment.

2Thus, our estimates can be interpreted as ATTS.

30The analyses in Section 2.6 are consistent with an appropriate randomization process.
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Survey (RECS), we find that two to three years after our experiment, only 4.09% of all households
in the survey and 10.58% of households observationally similar to those in our study own a smart
thermostat.3! Additionally, while we are unable to directly observe whether any households in the
control group upgrade their thermostat, we never observe control households using a smart ther-
mostat on Opower platform. Thus, the available evidence supports the validity of the assumption
of one-sided noncompliance in our experimental context.

4 Results

We begin by reporting estimates of the parameters in Equation 1 for electricity and natural gas in
the next section. We then re-estimate the model on restricted subsamples of the data to investigate
whether our main results mask significant, but offsetting, heterogeneous treatment effects. We
estimate the model on subsamples by quintiles of ambient weather conditions, day of the week,
and hour of the day in the subsequent section.

4.1 Main Estimates

Table 4 reports estimates of the effect of a smart thermostat on energy use based on the full sample
comprised of households recruited during both waves of the experiment.3> Panel (A) reports esti-
mated effects on electricity usage, and Panel (B) reports analogous estimates based on consumption
of natural gas. Column (1) reports estimates of a basic version of the DDIV model neither any fixed
effects, time effects nor additional controls.33 Column (2) reports estimates from a model that adds
an indicator for the wave the household was recruited during, as well as linear and quadratic hourly
county temperature and humidity readings as controls for recruitment and ambient weather condi-
tions, respectively. Column (3) reports estimates from a model that adds household fixed effects
to control for all time-invariant unobserved characteristics of a household and home (e.g., age and
square footage of the home, number of family members).?* Column (4) reports estimates from a
model that adds month-of—year (MOY) effects to control for aggregate, time-varying effects such

31The RECS is not conducted annually, so we use data from the 2015 survey as it is the closest possible survey
iteration subsequent to the time period observed in our data. The previous iteration of the survey in 2009 did not ask
questions about smart devices. We define “observationally similar” households by restricting the RECS sample to
homes that would pass Opower’s initial eligibility screening to join the trial (to the extent possible given the measures
available). Specifically, we condition on owner-occupied, single-family homes located in the Pacific Division (state
of residence is not observed) that have a functioning central furnace or heat pump, central air conditioning, and
an electrical connection. We are not able to condition on whether or not the household has a high-speed Internet
connection or whether the occupants plan to move in the next year, as those questions are not part of the RECS survey.

¥ Given the issue with the observation of pre-experiment energy outcomes for households in the first wave of recruit-
ment (illustrated in Panel (c) of Figure 4) that results in short pre-periods for some homes from the Northern California
wave of the experiment, Appendix Section C.1 reports analogous estimates separately by wave based on subjects re-
cruited during the Northern California and Central California waves of the experiment, respectively. Estimates based
on these samples are qualitatively similar and do not affect the the conclusions drawn from our analysis.

33Relative to Equation 1, the model in Column (1) replaces Ocl-/ with o/S;, replaces [3/ with ﬁf P,, and restricts 8/ = 0.

34Since the experimental wave indicator is perfectly collinear with recruitment wave, we drop the wave indicator
from this and subsequent specifications.
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as seasonal variation in weather patterns.>> Column (5) adds day-of-week effects to control for
variation in daily usage patterns due to occupant work and schooling schedules. Finally, Column
(6) replaces the time effects with day and hour-of-day effects.3®

The coefficient estimate of —0.031 reported in Column (1) of Panel (A) indicates that a smart
thermostat causes a 0.031 kWh decrease in electricity usage per hour. The cluster-robust estimate
of the standard error of 0.036 reported in parentheses indicates that this estimate is statistically
insignificant.’” The estimated effect is equivalent to about two percent of the baseline energy use
of 1.293 kWhs per hour (the constant). The natural gas coefficient estimate in Panel (B) of the
same column is equivalent to almost 6.5% of baseline energy use, but the coefficient estimate is
positive. Both estimates are well short of the savings estimates from engineering studies touted
by the thermostat manufacturers. Across all specifications in both panels, the lack of economic or
statistical significance indicates that smart thermostats do not reduce energy usage. In fact, for both
electricity and natural gas use, the estimates reported in Column (6), are positive, and the natural
gas estimate is statistically significant.

4.2 Heterogeneity in Treatment Effects

In order to investigate the possibility of significant, heterogeneous effects that are not apparent in
the aggregate, we estimate the model conditional on various sub-sample selection criteria. Since
smart thermostats will only have an effect on energy usage when there is a need for the HVAC
system to heat or cool the house, moderate ambient temperature observations may attenuate a sig-
nificant effect. To address this concern, Table 5 reports estimates by ambient temperature quintile
based on our preferred specification reported in Column (5) of Table 10. If the effect of a smart
thermostat is only apparent when the HVAC system is in use, we would expect to find significant
effects in the upper quintiles of temperature for electricity use and in the lower quintiles for natural
gas. This is not the case. Only one of the 10 estimates is statistically significant, and the significant
effect occurs in the second quintile of temperature for electricity consumption. Given the overall
pattern of results, this finding is likely spurious.3®

Alternatively, since smart thermostats may only have an effect on energy use during the week-
days when individuals have predictable schedules, Table 6 reports estimates by day of the week

35 Estimates based on models that include and week-of—year (WOY) effects and models that instead include month-
by-year or week-by-year effects result in qualitatively similar results.

36Estimates based on models that include weather controls, day-of-week effects, and household-by-MOY (or
household-by-WOY) effects do not affect our findings. The specification identifies off of hourly (electricity) or daily
(gas) variation in usage within a household at a particular time of year. Intuitively, identification comes from the
change in consumption in a given month of a the year for a treated home before and after treatment, relative to that
same change for a control home. We also estimate models that include ZIP Code-by-MOY and ZIP Code-by-WOY
effects that similarly identify off of variation within a neighborhood at a particular time of year. Again, results are
qualitatively similar.

¥7Standard errors in parentheses are clustered at the household level. The rk LM and Wald F statistics are first-stage
diagnostic tests of under and weak identification, respectively, in models with non-i.i.d. errors. In all specifications,
we reject the nulls of an under or weakly identified model. See Kleibergen and Paap (2006) for details.

3In Appendix Section C.2, we report estimates from analogous models that condition on ambient humidity and
heat index quintiles. Results are qualitatively similar.
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Table 4: ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(1) 2) 3) ) ) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
PWh -0.031 -0.031 -0.003 -0.001 -0.001 0.026

(0.036) (0.035) (0.022) (0.022) (0.022) (0.017)
Constant 1.293%%%* 2.873%%*

(0.024) (0.060)
N 1,379 1,379 1,379 1,379 1,379 1,379
NxT 16,421,734 16,421,734 16,421,734 16,421,734 16,421,734 16,421,734
R? 0.004 0.118 0.135 0.091 0.091 0.051
F statistic 67.704 538.083 818.852 749.195 743.903 547.479
rk LM statistic 738.263 749.372 611.958 612.274 612.275 488.960
rk Wald F statistic 790.294 819.435 1,948.381 1,951.624  1,951.629  1,931.185
Panel B: Natural Gas (thm)
ghm 0.062 0.065 0.028 0.023 0.023 0.055%*

(0.060) (0.049) (0.028) (0.026) (0.026) (0.022)
Constant 0.963#** 14.320%**

(0.028) (0.227)
N 1,369 1,369 1,369 1,369 1,369 1,369
NxT 677,304 677,304 677,304 677,304 677,304 677,304
R? 0.011 0.429 0.482 0.104 0.104 0.015
F statistic 126.946 685.010 910.597 687.556 686.021 87.637
rk LM statistic 733.785 744.065 618.764 619.162 619.163 497.269
rk Wald F statistic 790.386 817.152 1,976.210  1,980.104  1,980.097  1,958.933
Wave Indicator
Weather Controls X X X X X
HH Fixed Effects X X X
Month-of-Year Effects X X
Day-of-Week Effects X
Day Effects X
Hour-of-Day Effects X

Note: Standard errors in parentheses are clustered at the household level.

%k p < 0.01, ** p <0.05,and * p <O0.1.

All estimates are based on a sample comprised of both waves of the experiment. Estimates based on the “Northern
California” and “Central California” samples do not qualitatively affect our results. See Appendix Section C.1
for full results. Note that the estimates reported in Column (2) are based on a model that includes an indicator
for the first wave of experiment (N. CA). This indicator is perfectly co-linear with household fixed effects, so it
is dropped from subsequent models. The sample used to produce the estimates in Panel A is based on hourly
electricity meter readings in kWh, while the sample underlying the estimates in Panel B is based on daily natural
gas meter readings (thm). Based on the values of the rk LM and Wald F statistics, we reject the nulls of an under
or weakly identified model across all specifications. 2



and by weekday/weekend. Across all days of the week and when we aggregate to the week-
day/weekend level, we find no evidence that smart thermostats reduce energy consumption. Simi-
larly, smart thermostats may only have an effect during the times of day that individuals typically
schedule permanent temperature changes (e.g., before leaving for work/school or after returning
home). Table 7 reports estimates by hour of the day. We are only able to calculate estimates con-
ditional on the hour of the day for the effects of a smart thermostat on electricity usage, as we
observe natural gas use at the daily level. Again, there is scant evidence that smart thermostats

have a significant effect on energy use.>”

3We also report estimates from models that condition on both hour of the day and weekday/weekend in Appendix
Section 13. Results are qualitatively similar.
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Table 5: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Tempera-
ture Quintile

(D (2) (3) 4) (5)
Quintile 1  Quintile 2  Quintile 3  Quintile4  Quintile 5
Power Use (kWh or thm)

Panel A: Electricity (kWh)
Al -0.036 -0.033* -0.024 -0.008 0.009
(0.022) (0.019) (0.019) (0.024) (0.044)

N 1,376 1,379 1,379 1,379 1,378

NxT 3,345,085 3,541,064 3,239,489 3,102,224 3,193,872
R? 0.000 0.000 0.000 0.000 0.001
F statistic 1.522 1.610 14.502 16.745 24.597
rk LM statistic 368.164 652.296 681.468 600.120 545.434
rk Wald F statistic 1,379.806  1,920.331  1,966.682  1,879.175  1,769.185

Panel B: Natural Gas (thm)
hm -0.054 -0.013 0.005 -0.008 0.010
(0.064) (0.038) (0.023) (0.018) (0.015)

N 1,364 1,366 1,369 1,368 1,365
NxT 145,525 147,440 120,087 138,512 125,737
R? 0.001 0.000 0.000 0.000 0.000
F statistic 22.958 0.550 6.339 6.145 0.431
rk LM statistic 360.657 435.244 563.227 699.424 403.356
rk Wald F' statistic 1,375.353  1,587.271 1,323.568  1,802.507 1,377.126
Weather Controls

HH Fixed Effects X X X X X
Month-of-Year Effects X

Day-of-Week Effects X X X X X

Note: Standard errors in parentheses are clustered at the household level.

%k p < 0.01, ** p <0.05,and * p <O0.1.

All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce
the estimates in Panel A is based on hourly electricity meter readings in kWh, and temperature quintiles are
calculated from the distribution of hourly average ambient temperature readings. The sample underlying the
estimates in Panel B is based on daily natural gas meter readings (thm), and temperature quintiles are calculated
using the distribution of daily average ambient temperature readings. Based on the values of the rk LM and Wald
F statistics, we reject the nulls of an under or weakly identified model across all specifications.
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5 Potential Mechanisms

In order to better understand the null results from our experiment, we supplement our experimental
data with a high-frequency log of user interactions with their smart thermostat. Our goal is to
explore potential mechanisms that may explain our robust finding that smart thermostats have a
null effect on energy usage.*® We observe thermostat interactions in the latter data only for those
in the treatment group who install a smart thermostat. This limits our ability to use traditional
techniques to conduct causal inference, so we present a combination of descriptive and causal
evidence to examine whether patterns in the data are consistent with hypothesized mechanisms
that would cause a null result in the experiment. We investigate these mechanisms by asking five
questions about smart thermostat use:

1. Do users program their smart thermostats?

2. Do users program their smart thermostats for energy savings?
3. Do users deviate from their programed schedules?

4. Do user deviations increase or decrease energy use?

5. Do smart thermostats save any users energy?

If answers to the first or second questions are “no,” smart thermostats would have no effect on
energy use. If the answers to those questions are instead “yes,” but the answers to the third and
fourth questions are “yes” and “increase,” user override behavior may attenuate or negate the en-
ergy savings gained by using the programmable features of the smart thermostat. Finally, if the
answer to the last question is “yes,” determining which users save energy informs the important
dimensions that engineering models fail to account for.*! We proceed by using the available data
to answer each of these questions.

5.1 Do Users Program Their Smart Thermostats?

Peffer et al. (2013) find that programmable thermostats fail to achieve their advertised savings due,
in part, to poor usability.*? If users do not program schedules for their smart thermostats to follow
because the interfaces are too complicated or they do not understand how thermostats and/or their
HVAC systems work, we would not expect the installation of a smart thermostat to affect energy
consumption.

40Ge and Ho (2019) use similar high frequency data to analyze the effect that outdoor temperature has on smart
thermostat usage.

41Spoiler alert: our analysis suggests that the answers are “yes,” “yes,” “yes,” “increase,” and “yes.”

42Programmable thermostats are a precursor technology to smart thermostats. The two types of thermostats share
the ability to schedule permanent temperature setpoints in advance, but users cannot interact with programmable
thermostats remotely, nor do they offer built-in setpoint framing. Peffer et al. (2013) report that they were so difficult
to program that most users disabled their defining feature, and the ENERGY STAR program stopped certifying them
in December 2009.
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To determine the fraction of households who install the smart thermostat use the programmable
features of the device and how long it takes them to begin doing so, Figure 9 plots the CDF of the
time between the installation date and the first scheduled setpoint. The figure shows that almost all
users who install a smart thermostat program at least one permanent setpoint, and most households
do so almost immediately. The median time from installation to the first permanent setpoint is one
day.

Figure 9: Distribution of Time from Installation to First Scheduled Setpoint

Mean =4.3 Median=1.0 Min.=0.0 Max.=115.0
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Cumulative density conditional on observing the household in the HVAC events data.

Additionally, users do not just quickly schedule a permanent setpoint, then fail to continue to
use the smart features of the device. Individuals who have a smart thermostat installed as part of
our experiment set an average of 3.749 (heating and cooling) setpoints per day. Figure 10 plots
a measure of the frequency of permanent setpoints by hour of the day (denoted in military time)
for both heating (red bars) and cooling (blue bars) setpoints. The figure provides visual evidence
that setpoints occur frequently and when we would expect them: in the morning from about 5:00
AM until 10:00 AM when most users wake and leave for work and/or school. Similarly, there is
a small increase in frequency of setpoints during the afternoon from 4:00 PM until 7:00 PM when
users return home at the end of their days. Consistent with scheduling setpoints when most users
go to sleep, we also observe frequent setpoints in the evening from about 10:00 PM until 12:00
AM. Thus, our analysis suggests that users do program their smart thermostats both quickly and
frequently.
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Figure 10: Average Permanent Setpoints per Household per Day by Time of Day
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5.2 Do Users Program Their Smart Thermostats for Energy Savings?

The previous analysis is consistent with users taking advantage of their device’s scheduling feature,
but is inconclusive as to whether or not they are programming setpoints to achieve energy savings.
To inform the latter, Figure 11 is a box and whisker plot of heating and cooling setpoints by
hour of the day. The dashed lines represent the cooling and heating temperature settings the EPA
recommends for energy savings of 78 degrees F for cooling and 68 degrees F for heating.*> The
figure illustrates that median (as well as the 25th and 75th percentiles of) temperatures are in
line with the EPA’s recommendations. According to Table 2, cooling setpoints average 78.80
degrees F and are higher than heating setpoints, which average 63.95 degrees F. Additionally, the
figure illustrates that there is temporal variation in setpoints over the course of the day consistent
with individuals adjusting settings when they leave the house: cooling setpoints increase slightly
starting at around 9:00 AM and drop back to baseline around 3:00 PM. Heating setpoints follow
a similar, but opposite pattern with a more pronounced discrepancy between evening and daytime
temperature setpoints. Overall, while the figure illustrates variation in setpoints across households,

43Source: https://www.energy.gov/energysaver/thermostats.
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our analysis suggests that users program their smart thermostats to save energy.**

Figure 11: Box and Whisker Plots of Permanent Setpoints by Time of Day
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Dashed lines represent EPA recommended cooling/heating settings.

5.3 Do Users Deviate from Their Programed Schedules?

Given that users seem to be programing their smart thermostats and doing so with energy savings
in mind, we turn to an alternative explanation for our null findings. The remote features of the
thermostat reduce the costs associated with both permanent and temporary setpoint changes. If
users program their thermostats to reduce energy usage, but the ability to more easily adjust tem-
perature settings via a computer or smart phone makes individuals more likely to deviate from
their schedules, individuals may undo the benefits of their smart thermostat. If so, the effects of
the scheduling and override features of smart thermostats have opposing effects on energy use and
could result in a net null effect.

To explore this possibility, Figure 12 plots a measure of the frequency of setpoint overrides
by time of the day.*> As we would expect, overrides are more frequent when most individuals

4Regarding the variation in setpoints, Table 2 reports standard deviations of 4.12 degrees for cooling and 5.58
degrees for heating setpoints.

The figure is the analog to Figure 10 for temporary overrides, save for our definition of “per day.” While users
program both heating and cooling setpoints every day, we typically only observe heating (cooling) overrides on heating
(cooling) degree days. Given that we predominantly observe the HVAC system events data during the fall and winter,
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are likely to be awake, from about 6:00 AM to 11:00 PM. Heating overrides peak in the morning
and early eventing, while cooling overrides rise throughout the day until about 6:00 PM. More
importantly given our focus, the figure illustrates that users often override their permanent schedule
both when heating and cooling their homes. Compared to the previously noted 3.749 setpoints per
day, users in our data temporarily override their permanent setpoints an average of 1.699 times
per day. The hourly measures are also substantial relative to the number of permanent setpoints
reported in Figure 10.

Figure 12: Average Temporary Overrides per Household per Day by Time of Day
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* Cooling/heating days defined as those when the HVAC system cooled/heated the home.

5.4 Do User Deviations Increase or Decrease Energy Use?

Evidence that smart thermostat users frequently override their setpoints offers a potential expla-
nation for our null findings, but it is not conclusive of one. The features of the smart thermostat
that lower adjustment costs both make it easier to override in ways that increase energy use (e.g.,
users no longer have to get off the couch or out of bed and walk to the thermostat when they are
uncomfortable) and to override to decrease energy use (e.g., by toggling the HVAC system off
when leaving home). To determine which effect dominates, Figure 13 plots kernel densities of the

failure to address this issue results in heating and cooling override measures that are of different magnitudes. To
account for this artifact in the data, we adjust the numerator of our measure to days on which the HVAC system heated
or cooled the home to standardize the scales of the heating and cooling override measures.
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difference between the override temperature a user sets and the permanent setpoint, conditional
on a temperature override, by temperature setting (cooling or heating). The figure illustrates that
when users override their permanently scheduled setpoints, they generally do so in ways that use
more energy: when cooling, they set temperatures colder and when heating, they set it warmer.*6
Taken together with the previous figure, our analysis suggests that individuals undo the benefits of
their preset smart thermostat schedule when they are uncomfortable in the moment. This suggests

a potential explanation for our null experimental findings.

Figure 13: Density of Difference between Temporary Override and Permanent Setpoint Tempera-
tures by Heating/Cooling
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Densities truncated at the 5th and 95th percentiles.

5.5 Do Smart Thermostats Save Anyone Energy?

To provide more definitive evidence that lowered adjustment costs undo the benefits of the other
features of the smart thermostat and, more generally, to determine whether user behavior explains

46There is a non-trivial mass at large override-setpoint temperature differences (e.g., greater than 10 degrees F).
This is primarily driven by a small number of households that program setpoints (~55 degrees F) that essentially turn
off the HVAC system in the morning and override those setpoints at varying times in the afternoon/evening every day.
This is consistent with using the programmable features of the smart thermostat based on a consistent daily departure
time and a variable return time. Additionally, we note that the figure plots override-setpoint temperature differences,
not override-ambient temperature differences. The ambient temperature may not actually be as low as the setpoint, so
the actual temperature change caused by the override may not be so extreme.
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the discrepancy between our estimates and those from engineering studies, we combine measures
calculated from the HVAC events data with our experimental data and estimate heterogeneous
treatment effects by multiple definitions of user energy-efficiency type. Since engineering esti-
mates contend that smart thermostats reduce energy use absent human intervention, our goal for
this analysis is to estimate whether any users “act like engineers” and are able to reduce energy use
by installing a smart thermostat. Determining which user energy-efficiency types enjoy savings
informs what relevant dimensions of user behavior are missing from the engineering studies.

We begin by using the HVAC events data to classify households who installed a smart thermo-
stat based on how diligently they use their device to achieve energy savings. We do so by defining
three energy-efficiency types: high-efficiency (H), low-efficiency (L), and unknown types (?). Fig-
ure 14 illustrates how this classification builds on our existing experimental design. The unknown
type is necessary because we do not observe all households who install a smart thermostat in the
HVAC events data. The high and low types are based on the distributions of two measures of
energy-efficiency: the average number of permanent setpoints and temporary overrides observed
per hour. For both metrics, we specify models based on various cutpoints between high and low
types. As an example, we define high-efficiency type households based on the permanent setpoint
measure as those above the median and low-efficiency types as those below the median. In con-
trast, for the other metric, we define high-efficiency types as those below the median number of
average overrides per hour and low-efficiency types as those above the median. Figure 15 plots the
CDFs of both measures of energy-efficient behavior.

Figure 14: Modified Sample Randomization with Energy-Efficiency Types
N=1,379

Control Treatment
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Figure 15: Distributions of Permanent Setpoints and Temporary Overrides
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Given these classifications, we interact indicators for type with treatment and estimate a DDITT
model.#” Letting k €{H, L, ?} index the three energy-efficiency types, we estimate

eh = of + B/ + Y VTR, + Xi Bl +u, 3)
k

where Rf.‘ is an indicator for household i being of energy-efficiency type k and all other indexes,
variables, and parameters are defined as in Equations 1 and 2. The parameters of interest in this
model are the }fk’ which are the the ITT effects of a smart thermostat on the consumption of energy
Jj for households of type k.

Table 2 indicates that we have the best coverage of households recruited during the Northern
California wave of the experiment in the HVAC system events data, and Figure 7 illustrates that the
majority of the events are observed during the fall and winter when natural gas is the predominant
type of energy consumed. For these reasons, we estimate our model for natural gas use based on
the the Northern California wave subsample because doing allows us to most accurately classify
household energy-efficiency type.

Table 8 reports estimates of the y}(hm parameters based on this subsample. Panel (A) reports
estimated effects from a model based on the permanent setpoint energy-efficiency type classifi-

4TWe are not able to estimate an analogous DDIV model because we do not have valid instruments for types.
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cation, and Panel (B) reports analogous estimates based on the temporary override type defini-
tion. Column (1) reports estimates from a baseline DDITT model that does not differentiate by
energy-efficiency type. Consistent with our DDIV model estimates, the effects are not statisti-
cally significant. Columns (2) through (6) report estimates based on varying definitions of the
high- vs. low-type percentile cutpoint.*® The estimates in Panel (A) in these columns indicate that
households above the 10th percentile of average permanent setpoints per hour enjoy statistically
significant savings, with those above the 90th percentile seeing the greatest reduction in their nat-
ural gas use. In contrast, low-efficiency types who program relatively few setpoints never reduce
their energy consumption after installing a smart thermostat.

Similarly, the estimates reported in Column (6) of Panel (B) indicate that high-efficiency types
above the 75th and 90th percentiles of fewest temporary overrides enjoy significant savings, while
low types below the 90th percentile see a significant increase in their energy use. The overall pat-
tern is not as consistent as in Panel (A), but the significant, negative estimate for the low-efficiency
types below the 10th percentile in Column (2) (those who most often temporarily override their
permanent setpoints) suggests that both those who most frequently and most infrequently override
their setpoints see significant energy savings. This is consistent with the two opposing types of
overrides that result from smart thermostats reducing adjustment costs.

Overall, these results support our descriptive analysis findings, inform the mechanisms that
drive our null experimental estimates, and confirm that estimates of the effect of installing a smart
thermostat based on engineering models fail to adequately account for how individuals use the
device. Consumer and policymaker decisions based on these estimates are destined to fall short of
their expected result.

48For instance, the estimates reported in Column (4) of Panel (A) define high-types as those with greater than the
median number of setpoints per hour and low-types as those below the median.
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Table 8: ITT Estimates of the Effect of a Smart Thermostat on Natural Gas Use by Energy-
Efficiency Type

ey @) 3) “) 5 (6)
High/Low-Type Percentile Cutpoint
Baseline 10 25 50 75 90

Power Use (thm)

Panel A: Permanent Setpoint Type Classification

ghm 0.047
(0.037)
film -0.070%  -0.104%F  -0.138%%% 0, 173%k* 0,29 #**
(0.042)  (0.043)  (0.046) (0.057) (0.073)
gphm -0.049 0.104 0.018 -0.018 -0.041
(0.143)  (0.100)  (0.065) (0.051) (0.044)
lm 0.056 0.056 0.056 0.056 0.056
(0.160)  (0.160)  (0.160) (0.160) (0.160)
N 805 805 805 805 805 805
NxT 398,243 398,243 398,243 398,243 398,243 398,243
R? 0.650 0.650 0.650 0.650 0.650 0.650
F statistic 22.503  16.711 17.077 17.147 17.201 17.831

Panel B: Temporary Override Type Classification

ghm 0.047
(0.037)
film 0.067 -0.060 -0.063 -0.077* -0.089**
(0.144) (0.078) (0.057) (0.046) (0.041)
gihm -0.085**  -0.072 -0.078 -0.032 0.423%**
(0.042) (0.046) (0.050) (0.071) (0.080)
%hm 0.056 0.056 0.056 0.056 0.056
(0.160) (0.160) (0.160) (0.160) (0.160)
N 805 805 805 805 805 805
NxT 398,243 398,243 398,243 398,243 398,243 398,243
R? 0.650 0.650 0.650 0.650 0.650 0.650
F statistic 22.503 16.784 16.698 16.726 16.868 22.463
Weather Controls X X X X X X
HH Fixed Effects X X X X X X
Day Effects X X X X X X
Hour-of-Day Effects X X X X X X

Note: Standard errors in parentheses are clustered at the household level.
*#% p <0.01, ** p <0.05,and * p < 0.1.
All estimates are based on a sample comprised of the “Northern California” wave of the experiment. The

sample underlying the estimates in both panels is based on daily natural gas meter readings (thm).
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6 Conclusion

Our work informs the efficacy of a popular technology designed to conserve energy by exploring
how smart technologies affect energy use—both through actual measurement and by investigating
the mechanisms that prevent the realization of advertised energy savings. We provide evidence
from a field experiment wherein residential households are randomized into either a treatment
group that receives a smart thermostat or a control group. The smart thermostats given to the
treatment group allow households to set more advanced schedules and adjust temperature settings
remotely via a smart phone app. In addition, the smart thermostats provide households in the
treatment group with information designed to promote energy-efficient setpoints.

In contrast to the commonly held prior that smart thermostats are an effective way to reduce
residential energy use, we find no evidence that the installation of a smart thermosat reduces house-
hold energy consumption. This null result is robust to numerous specifications. We believe that the
discord between the results of our field experiment and the extant belief stems from the source of
the latter: engineering studies that do not adequately account for how individuals use their smart
devices. We augment our experimental analysis with data on user interactions with their smart
thermostat and find evidence that supports this belief.

There are many ways to extend our research. One avenue would be to better understand how
different smart technology features, that often have opposing theoretical energy impacts, affect ac-
tual usage. Another would be to understand why smart thermostats are so popular given their costs
and trivial energy-efficiency benefits. This avenue speaks to the energy efficiency gap literature
as outlined by Allcott and Greenstone (2012). A further avenue would be to explore the impact
that such technologies have on the price elasticity of energy demand (some preliminary evidence
from Herter (2007) suggests that they do). If technology can enable people to better optimize their
energy consumption, then price might become even more salient and therefore make people more
marginal.

In summary, cooling and heating homes, powering transportation, and producing the wealth
of goods and services enjoyed in modern economies are all heavily reliant on energy. Given that
most of the world relies on non-renewable resources to produce energy, this reliance does not
appear to be ending any time soon (Covert et al., 2016), and the negative externalities of energy
production, one of the greatest policy challenges of this century centers on energy use. Without
efforts to promote energy conservation and associated reductions in greenhouse gas emissions,
future generations will face a lower quality of life due to a degraded environment. We believe this
paper is one small step towards ensuring that decision makers focus their energies on the smartest
policies possible.*?

49Puns intended.
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A Smart Thermostat

Figure 16: Smart Thermostat Overview

(a) Interfaces: The left panel shows the web portal, the middle panel shows the smartphone app, and the right
panel shows the thermostat.
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On a typical Monday:

| leave during the day. v
I'm usually at home.

It's unpredictable.

My Monday schedule:
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Leave home: 07:45 AM >
Return home: 05:00 PM >
Bedtime: 10:00 PM >

(b) Permanent Setpoint Scheduling: Screen-
shot of the smartphone app scheduling inter-

face. 42



Figure 17: Smart Thermostat Features
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(a) Setpoint Choice Messaging: Screenshots of smartphone app that shows the messaging associated with
different temperature set points.
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(b) Temporary Overrides: Screenshots of the smartphone app that fa-
cilitates changes to the temperature setpoint. The left panel shows the

interface after the user indicates she is not home. The right panel shows
the same interface when the user indicates she is at home.
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B HVAC System Events Data

Figure 18: Timing of HVAC System Events
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C Additional Heterogeneous Treatment Effects Estimates

C.1 Northern and Central California Wave Estimates

Tables 9 and 10 report estimates based on a samples comprised of the “Northern California” and
“Central California” waves of the experiment. Results are not qualitatively different from those

based on the full sample.
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Table 9: ATT Estimates of the Effect of a Smart Thermostat on Energy Use Based on the Northern
California Wave of the Experiment

(1) 2) (3) “) ) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
W h -0.055 -0.061 -0.016 -0.016 -0.016 -0.003

(0.058) (0.058) (0.046) (0.046) (0.046) (0.041)
Constant 1.294 %% 2.553%**

(0.035) (0.072)
N 815 815 815 815 815 815
NxT 9,729,849 9,729,849 9,729,849 9,729,849 9,729,849 9,729,849
R? 0.003 0.051 0.062 0.052 0.052 0.017
F statistic 44.591 270.070 343.596 353.483 350.375 171.299
rk LM statistic 391.219 391.264 313.225 313.190 313.190 269.656
rk Wald F statistic 379.956 380.003 670.871 670.765 670.766 639.637
Panel B: Natural Gas (thm)
ghm -0.009 0.009 0.085 0.075 0.075 0.069

(0.061) (0.063) (0.068) (0.066) (0.066) (0.055)
Constant 0.523%%** 17.739%%*

(0.020) (0.304)
N 805 805 805 805 805 805
NxT 398,243 398,243 398,243 398,243 398,243 398,243
R? 0.021 0.439 0.504 0.111 0.111 0.003
F statistic 801.768 568.771 674.486 519.934 520.789 22.446
rk LM statistic 386.783 386.896 313.868 313.885 313.886 270.288
rk Wald F statistic 377.042 377.090 672.580 672.617 672.609 641.179
Weather Controls X X X X X
HH Fixed Effects X X X
Month-of-Year Effects X X
Day-of-Week Effects X
Day Effects X

Hour-of-Day Effects

Note: Standard errors in parentheses are clustered at the household level.

ek p < 0.01, ** p <0.05,and * p <O0.1.

All estimates are based on a sample comprised of the “Northern California” wave of the experiment. The sample
used to produce the estimates in Panel A is based on hourly electricity meter readings in kWh, while the sample
underlying the estimates in Panel B is based on daily natural gas meter readings (thm). Based on the values of the

rk LM and Wald F statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Table 10: ATT Estimates of the Effect of a Smart Thermostat on Energy Use Based on the Central
California Wave of the Experiment

(1) () (3) ) 4) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
PWh 0.009 0.006 0.002 0.002 0.002 -0.001

(0.029) (0.028) (0.025) (0.025) (0.025) (0.023)
Constant 1.292%%* 3.105%%%*

(0.030) (0.090)
N 564 564 564 564 564 564
NxT 6,691,885 6,691,885 6,691,885 6,691,885 6,691,885 6,691,885
R? 0.003 0.204 0.229 0.110 0.109 0.047
F statistic 49.321 411.636 539.983 392.831 389.611 249.936
rk LM statistic 394.996 395.009 384.992 384.985 384.985 374.160
rk Wald F statistic 677.494 677.449 1,352.535  1,352.620 1,352.619  1,365.852
Panel B: Natural Gas (thm)
gthm -0.003 0.007 0.001 0.001 0.001 -0.021

(0.044) (0.031) (0.027) (0.026) (0.026) (0.026)
Constant 1.101%** 10.130%**

(0.034) (0.233)
N 564 564 564 564 564 564
NxT 279,061 279,061 279,061 279,061 279,061 279,061
R? 0.001 0.439 0.496 0.096 0.096 0.003
F statistic 3.488 357.120 408.612 280.326 281.833 15.312
rk LM statistic 393.909 393.941 390.416 390.404 390.404 379.295
rk Wald F statistic 675.636 675.284 1,376.620  1,376.557  1,376.527  1,388.599
Weather Controls X X X X X
HH Fixed Effects X X X
Month-of-Year Effects X X
Day-of-Week Effects X
Day Effects

Hour-of-Day Effects

Note: Standard errors in parentheses are clustered at the household level.

ek p < 0.01, ** p <0.05,and * p <O0.1.

All estimates are based on a sample comprised of the “Central California” wave of the experiment. The sample
used to produce the estimates in Panel A is based on hourly electricity meter readings in kWh, while the sample
underlying the estimates in Panel B is based on daily natural gas meter readings (thm). Based on the values of the

rk LM and Wald F statistics, we reject the nulls of an under or weakly identified model across all specifications.
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C.2 Additional Ambient Weather Estimates

Table 11 reports estimates by ambient humidity quintile based on our preferred specification re-
ported in Column (5) of Table 4. Table 12 reports analogous estimates by ambient heat index
quintile. Across all specifications, we find little evidence that smart thermostats reduce energy
consumption. The only exception that is robust to both types of energy consumption occurs when
there is high humidity (Column (5) of Table 11).
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Table 11: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Humidity
Quintile

() (2) (3) 4) Q)]
Quintile 1  Quintile 2 Quintile 3 Quintile 4 Quintile 5
Power Use (kWh or thm)
Panel A: Electricity (kWh)
PWh 0.050 -0.010 -0.021 -0.041%* -0.066%**
(0.048) (0.024) (0.019) (0.018) (0.020)
N 1,379 1,379 1,379 1,379 1,379
NxT 3,313,684 3,333,963 3,255,920 3,239,969 3,278,198
R? 0.002 0.000 0.000 0.000 0.000
F statistic 45.607 3.514 8.612 4.219 7.804
rk LM statistic 521.960 564.647 595.843 638.333 623.192
rk Wald F statistic 1,763.238  1,860.182  1,910.165  1,944.091 1,612.296
Panel B: Natural Gas (thm)
ghm 0.004 -0.010 -0.005 0.047 -0.022
0.017) (0.025) (0.036) (0.044) (0.067)
N 1,367 1,369 1,369 1,369 1,367
NxT 141,016 133,650 132,648 153,013 116,975
R? 0.000 0.000 0.000 0.000 0.002
F statistic 0.930 0.188 0.149 14.963 65.458
rk LM statistic 380.444 564.518 647.032 611.390 550.812
rk Wald F statistic 1,356.189  1,740.682  1,908.480  1,522.235 1,306.659
Weather Controls
HH Fixed Effects X X X
Month-of-Year Effects X
Day-of-Week Effects X X X

Note: Standard errors in parentheses are clustered at the household level.

%k p < 0.01, ** p <0.05,and * p <O0.1.

All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce the
estimates in Panel A is based on hourly electricity meter readings in kWh, and humidity quintiles are calculated
from the distribution of hourly average ambient relative humidity readings. The sample underlying the estimates
in Panel B is based on daily natural gas meter readings (thm), and humidity quintiles are calculated using the
distribution of daily average ambient relative humidity readings. Based on the values of the rk LM and Wald F
statistics, we reject the nulls of an under or weakly identified model across all specifications.
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Table 12: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Heat
Index Quintile

() 2 (3) 4) %)
Quintile 1 ~ Quintile 2  Quintile 3  Quintile 4  Quintile 5
Power Use (kWh or thm)

Panel A: Electricity (kWh)
PWh -0.036 -0.030 -0.026 -0.009 0.009
(0.022) (0.019) (0.019) (0.024) (0.043)

N 1,376 1,379 1,379 1,379 1,378

NxT 3,296,464 3,272,861 3,296,156 3,273,130 3,283,123
R? 0.000 0.000 0.000 0.000 0.001
F statistic 1.491 1.632 13.865 17.538 24.681
rk LM statistic 367.624 636.517 691.267 604.526 546.840
rk Wald F statistic 1,381.488  1,927.034  1,955.091  1,883.345  1,770.575

Panel B: Natural Gas (thm)
g hm -0.060 -0.004 -0.004 -0.003 0.009
(0.066) (0.044) (0.024) (0.018) (0.015)

N 1,364 1,366 1,369 1,367 1,365
NxT 135,502 136,401 134,876 135,317 135,204
R? 0.001 0.000 0.000 0.000 0.000
F statistic 18.708 6.519 10.808 12.692 0.289
rk LM statistic 351.296 404.357 586.160 702.841 413.818
rk Wald F statistic 1,364.503  1,468.623  1,403.564 1,797.169  1,406.956
Weather Controls

HH Fixed Effects X X X X

Month-of-Year Effects X X X

Day-of-Week Effects X X X X

Note: Standard errors in parentheses are clustered at the household level.

%k p < 0.01, ** p <0.05,and * p <O0.1.

All estimates are based on a sample comprised of both waves of the experiment. The sample used to produce
the estimates in Panel A is based on hourly electricity meter readings in kWh, and heat index quintiles are cal-
culated from the distribution of hourly average ambient heat index readings. The heat index is calculated using
temperature and humidity readings. See https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml for the
exact formula. The sample underlying the estimates in Panel B is based on daily natural gas meter readings (thm),
and heat index quintiles are calculated using the distribution of daily average ambient heat index readings. Based
on the values of the rk LM and Wald F statistics, we reject the nulls of an under or weakly identified model across

all specifications.
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C.3 Additional Hour of the Day Estimates
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D Recruitment and Enrollment

D.1 Subject Eligibility

Table 14: Subject Eligibility Summary

Eligible Not Eligible
Rent or own? Own Rent
Home Type House or Condo Apartment or Other
Phone 1Phone or Android Blackberry or Other
# of Thermostats 1 >2
A/C Central Air Box Unit, Fans, Other
Heating Air Vents Baseboard or Other
High-speed Internet? Yes No
Plan to move in next year? No Yes

D.2 Trial Recruitment and Enrollment Guide
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Introduction

Experimental Trial Information

UTILITY is running an experimental thermostat trial with Opower and Honeywell, offering
eligible customers a free remote-controlled thermostat solution (a thermostat controlled by a
smartphone and web application). The goal of the experiment is to test the energy savings and
customer experience of the thermostat solution. Customers gain a thermostat and app that helps
them save energy, by creating a customized, energy efficient schedule that fits their lifestyle.

For this trial, 1 in 2 qualifying customers will receive the thermostat solution. Customers who
meet the eligibility qualifications must complete the online enrollment process to determine if
they will receive a thermostat or not. At the end of the online enrollment process the system will
randomly flip a coin to determine which customer will receive the remote-controlled thermostat
and which will not. All customers who enroll for a chance to participate are benefiting the trial
(even those who do not receive a thermostat), and it is important that all qualified customers
complete the full enrollment process.

Customers should be encouraged to enroll for a chance to receive this exciting solution, which
allows them to control their thermostat on-the-go. UTILITY, Opower, and Honeywell are grateful
for the time each customer takes to enroll online for a chance to participate, and all customers
should be thanked for their time regardless of the outcome.

Customers should be encouraged to answer all qualification and enrollment questions honestly. If
a customer provides inaccurate information during enrollment it negatively impacts the trial and
the customer will ultimately be turned down for the trial.

Talking Points for Recruitment Events

Initial Communication

Initial communication should be a call to action, provide quick benefits (FREE remote-controlled
thermostat), provide a fun atmosphere and garner attention.

* Do you own an iPhone or an Android? If so, would you be interested in a free thermostat
controlled by your smartphone?

* How would you like to gain better control of your energy use at home? You can control
your thermostat at home from right here! Want to know how?

e Sign-up for a free remote-controlled thermostat, a $500 dollar value and take control of
your energy consumption and improve the comfort of your home.

¢ I know you’re in a hurry but this opportunity will allow you to take control of your
energy use and you’ll always come home to a house at the perfect temperature.

* Save energy while you’re away and stay comfortable while you’re at home, all by using
your smartphone or the web.

* How would you like to control your heating/cooling by your iPhone or Android and

Copyright 2012 by Opower and Honeywell. All rights reserved. 2



through the internet from anywhere in the world?
After Initial Communication

After initial communication, you should be focused on getting the customer more excited about
the offering by providing key information and benefits unique to the opportunity.

*  We are conducting a trial on behalf of UTILITY that allows you to interact with your
heating & cooling system using your smartphone or the web. That means you can control
your home’s comfort at your fingertips from wherever you are. All you need is your
smartphone of the web. Are you ready to take control?

* Did you know that a typical family spends almost half (49%) of its energy cost on heating
and cooling? (Source: Energy Star)-- How would you like to have the opportunity to be
selected for a special trial UTILITY is conducting to provide a limited number of
customers a thermostat controlled by your smartphone? That’s right you can control the
comfort of your home at anytime or any place using your smartphone or the web.

*  How would you like to be one of the lucky UTILITY customers who receives a free
thermostat controlled on-the-go from your smartphone or the web? This is over a $500
value completely free with professional installation and a 1-year warrantee. UTILITY is
conducting this trial to allow customers a unique way to reduce energy use and save
money. The process for signing up only takes a few minutes of your time. Let’s see if you
qualify.

*  Check out this free thermostat controlled by your smartphone. You’ll have complete
control over your comfort, and you can see how your temperature settings stack up
against other participants in the trial.

Overcoming Initial Objections
Objection: “I don’t have time”

* You’ll never come home to a cold house again and sign-up only takes a few minutes.
Objection: “I still don’t have time”

* Okay; here’s how you can see if you qualify and sign-up from home (postcard)
Objection: “I don’t want to give out my personal information”

* You’re information is completely confidential and will be only used to determine if you
qualify for the free thermostat.

Objection: “I’m not interested”

* Here is a free pen, compliments of UTILITY. Have a great day!

Initial Eligibility Screening

Copyright 2012 by Opower and Honeywell. All rights reserved. 3



Do you rent or own your home? Own Rent
What kind of home do you own? Single family, - Apartment
Townhome, - Other
Condo
What kind of phone do you have? - iPhone - Blackberry
- Android - Other
How many thermostats do you have in your One (1) Two (2) or more
home?
How do you cool your home? Central air - Window box unit
- Fans
- Other
What is the main way you heat your home? Air vents - Baseboard
- Other
- None
Are your heating and air conditioning systems Yes No
functional and have you used them the last 6
months?
Do you have high-speed internet access Yes No
(Cable, DSL, satellite, Broadband)?
Do you have an available ethernet port on Yes No
your internet router?
Do you plan to move to a new home in the No Yes
next 12 months?
Will other adults in your household object to No Yes
enrolling in this program?

Customer Does NOT Pass Initial Eligibility Screening

Thank you for your interest, but unfortunately you don’t meet the eligibility requirements
for this trial. However, UTILITY is developing a number of residential energy efficiency
programs that you may qualify for. Please fill out this post card in to enable them to
contact you in the future for other offerings. Thank you and please accept this free pen,
compliments of UTILITY. We appreciate your time!

If you do know someone else who may be interested, please let them know about this free
trial and they can sign-up right away. (Staffer hands the customer a post card.)

Customer Passes Initial Screening

Great! You’ve pre-qualified to participate in the selection process, which only takes a few
minutes. Would you like to learn how the thermostat and app works? (demo)

Let’s get you signed-up and see if you are selected to join the UTILITY Smart
Thermostat Trial, with a free remote- controlled thermostat and professional installation.
The sign-up process just takes a few minutes and we can help you complete it here.

You’ll need your UTILITY account number for enrollment. You can use my phone to
retrieve your utility account number from UTILITY. You will also be asked to provide

Copyright 2012 by Opower and Honeywell. All rights reserved. 4



the last four digits of the Social Security Number of the UTILITY account holder—this
may be you or a housemate. Staffer provides customer phone & contact number (1-888-
743-0011).

Customer is Selected to Join the Trial

Encourage customers to take the first available appointment. Explain that technicians are only in
the area for a limited amount of time.

Congratulations! You’ve been selected to participate in the UTILITY Smart Thermostat
Trial. A customer service representative will contact you with further information about
your free installation. You will receive an email reminder with the date and time of your
installation appointment, but you may want to write it down now, so you don’t forget.

Tell your friends and family to see if they are eligible and sign-up online! (postcard)

Here is a free lens cleaner or smartphone holder for your smartphone, compliments of
UTILITY. We appreciate your time!

You will be contacted within a few days to confirm your eligibility and appointment
time. (Honeywell CSR will conduct a follow-up call to confirm appointment time &
answer any additional questions)

Customer is NOT Selected for the Trial

Thank you for your interest in the Smart Thermostat Trial. Unfortunately, this is currently a trial
so participation cannot be granted for everyone.

Copyright 2012 by Opower and Honeywell. All rights reserved.

In the event the trial is extended, would you like to leave your contact information, which
will only be used to contact you regarding other opportunities to participate in UTILITY
residential trials or programs?

Please accept this free pen, compliments of UTILITY. Have a great day.
Tell your friends and family to see if they are eligible and sign-up! (postcard).

Here is a free lens cleaner or smartphone holder for your smartphone, compliments of
UTILITY. We appreciate your time!



How Online Enrollment Works

If a customer passes the initial qualification screening, direct them to the Opower Web

application to enroll online. Eligible customers have a 1 in 2 chance of being selected to receive

a thermostat.

Enroll online at: https://thermostat.opower.com/

The customer begins by clicking "See if your household qualifies."

Want to experience the | 1 in 2
future of thermostats? Tree thermostat

Slay COMINLADN and idve MOtsry Wit youre

Verifying if the Household Qualifies

In order to verify that they can participate in the program, customers must answer a series of
questions about their home.

On the first verification screen, they are asked to provide the following information:

e Zip code: Qualified zip codes are those within the greater Fresno and Bakersfield areas,

see list provided by Honeywell.
*  Whether they rent or own: Customers must own their own home.

*  What kind of home they live in: Customers can select any option except "other."

*  Whether they plan on moving in the next year: Customers must plan on remaining in the

same home.

*  What kind of phone they have: Customers must have an iPhone or Android phone if the

utility program requires a smartphone.

Copyright 2012 by Opower and Honeywell. All rights reserved.



See if your household qualifies to participate in this program.

3) Tedl us adOUL vour ROULENOIS

If a customer qualifies based on the answers to the questions above, they are asked to provide the
following additional information:

* Number of thermostats: Customers can have only one thermostat.
* Primary cooling system: Customers must have central air.
* Main way they heat their home: Customers must have a gas furnace.

e [f their air conditioning and heat are currently working: Customers must have an
operational air conditioner and heater that they have used in the last 6 months.

Copyright 2012 by Opower and Honeywell. All rights reserved. 7



See if your household qualifies to participate in this program.
(2 of 3) Tell us about your heating and air conditioning.

How many thermostats are in your home?

One Two Three or more

* How do you cool your home?

Central air Window box Fans Other

B o

Heat pump Other

@ What is the main way you heat your home?

N

Gas furnace Baseboard Radiators

U Are your heating and cooling systems functional, and have you used them in the last 6 months?

Yes No

Back

Finally the customer is asked, if they:

Have high-speed Internet access: Customers must have high-speed access.
Have an available Ethernet port on their router: Customers must have an available port.
Are in agreement with the terms and conditions of the program: Customers must agree to

the terms. Terms vary by utility.

See if your household qualifies to participate in this program.

3) Just 8 few more QuesTions

@ D0 yOu Nave 37 IValA0H ETneMeT DO ON yOUr IMSEMGT FOULer
‘ @
- —
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When they complete the final verification screen, they are told if they are eligible to receive an
account. They must meet all of the qualifications to be considered for the program.

If a customer answers any of the qualification questions with a response that makes them
ineligible, they are excluded from the program.

We're sorry!

Your househeld doesn't meet all the requirements for participation In this program.

All program participants must meet the following qualifications

Creating an Account

Customers who are eligible for the program are required to enter the following information to
create an account:

* The email address they will use to access the Web application. Basic validation is
performed to verify that the email address is well-formed.

* A unique password. The password must be at least eight characters long. Passwords must
not be or contain the customer’s name or email address.

* Customers enter the same password again and are prompted to correct the password if it
is not identical in the two password fields.

¢ The full name of the utility account holder exactly as it appears on the utility bill. The
customer enrolling in the program must enter the name of the utility account holder as it
appears on the utility bill, even if they are not the account holder.

* The utility account number exactly as it appears on the utility bill. This includes spaces
or any other characters included in the data.

Customers are prompted to agree to the Opower Terms of Use.

Copyright 2012 by Opower and Honeywell. All rights reserved. 9



v) Great! Your household is qualified to participate.

3N 104 15 AD0UT YOUr Gy POUTING 10 S0¢ If YOU JIE SEHCTRT 10 FeCeive 3 Tree THrMOStat X take

mangtes 1

6y, W Can™ QFant ParDORITION 10 Every ROWNO AT Qual™ed. Tha Syilem will 1an00Mily sewdl 5C

Customers submit their account information, and then a new page prompts the customer to check
their email.

Now, please check your email.

8 -: -::-:';::.:t::'.:".‘. OUr EMAN 00ress. PIease Open aNa TICK 0N 11 50 we Can conm

Customers should receive an email message at the address they specified. If the customer does
not receive the email, they have the option to "Resend confirmation" in the Web application. The
email is titled "Your Thermostat," and it will arrive from an @opower.com email address. The
customer may need to check their junk/spam folder for the email.

Copyright 2012 by Opower and Honeywell. All rights reserved. 1



Let's make it official

Thanks for creating your thermostat account. As a final step, click

the button below to confirm your account and personalize your
thermostat settings in less than 2 minutes
Button not working? Copy and paste this URL into your browser

er.com/users/confirmation?

hitps://opow

confirmation_token

Confirm my account

The customer must click "Confirm my account" to complete their registration and verify their
email address. If nothing happens when the button is clicked, the customer can copy and paste the
customer-specific URL provided in the email to their Internet browser to confirm the account.

Thermostat Registration

Once the customer has confirmed their account, they are provided with more information about
the program and asked to describe their daily routine.

v) Great! Your thermostat account is confirmed.
Just a couple more steps!

%

Tell us about your delly routine See if you're selected

Qualifying Questions
The customer begins to program their thermostat by providing the following information:

*  Whether multiple people live in their home. Opower tailors the language in the
application to the number of people in the household.

Copyright 2012 by Opower and Honeywell. All rights reserved. 1



*  Whether they have pets. If the customer has pets, the default away temperature of the
home is adjusted to a safe temperature for household pets. For homes with pets, the
default away temperature is 82 instead of 85 for cooling and 60 instead of 55 for heating.

* Their mobile phone number. Customers are sent a text message to this number with a
link to the Opower mobile application..

Setting an Initial Schedule

After completing the qualification questions, the customer is prompted to create a personalized
schedule. By default, customers set a schedule for all weekdays and then Saturday and Sunday.

For all weekdays, Saturday, and Sunday, the customer has the following options:

* They can set a schedule for when they typically wake, leave the home, return home, and
go to sleep.

] Describe your daily routine

WeaKIay SCNeaIe m

Use a day-by-day schedule Instead

During the week:

O] S 1 1)

1 get up sround 1 eave The house around 1¢ome home around 1G9 % bed around

Back to Inside my house Continue to Saturdays
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* They can indicate they are home all day and set the time for when they usually wake and
go to sleep.

Describe your daily routine

ﬁ

P00 TEN LS 300UT YOUr TYDICH WeaKoay Use a day-by-day schedule Instead

During the week:

) 1usualy 9ave e nOute.

© = vy nrome

1get up arowna 19010 bed arouna

7-00m v | 11:000m v |

Tl prediclatie

m.mmmm
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* They can indicate their schedule is unpredictable. In this case, they are still asked when
they typically wake and go to sleep.

Describe your daily routine

M

PIa5e 1ol LS 3D0LT YOur typical WeeKoay Use a day-by-day schedule Instead

During the week:

) 1 ususey esve the nowse
@ rmusuanyaznome

@ Tsunpreaciatie

CRay Peate ssUmale when yOu S8 LD 900 GO 10 LD YO SN LTI LAVE MOy Dy L4tUng #TNCe~t lempDeratres T0r tieeping

Beck to Inside my house Continue to Saturdays
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Instead of setting the same schedule for all weekdays, a customer can also create a day-by-day
schedule for each weekday separately. The same schedule options are available on a daily basis.

:J Describe your daily routine

On Mondays:

1 9et up sround

Beck to Insicde my house

Setting Initial Temperatures

Use weekdey schedule

Customers are prompted to set their home and sleep temperatures for heating and cooling. The

default temperatures for these settings are based on the suggested Energy Star settings (ENERGY
STAR® Program Requirements for Residential Climate Controls, Version 1.0 Partner

Commitments, DRAFT 2).
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On the heating page, customers are asked how warm they would like their home to be when they
are home and asleep.

Describe your daily routine

Mesting temperstures m

uic cost you $30 this ves

Back to Sundays Continue to Cooling

If the home temperature is greater than the recommended setting (less efficient), an insight
appears to tell them how much money they will spend during the winter keeping the home at this
higher temperature. If the away temperature is higher than the recommended setting, they are
prompted to try setting the temperature lower since the house will warm up to a comfortable
setting before they wake up.
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On the cooling page, customers are asked how cool they would like their home to be when they
are home and asleep.

Describe your daily routine

Cooing larparatures

When Pm home When Pm asieep

Cost you S$BO this yes

Back to Heating ﬁ

If the home temperature is less than the recommended setting (less efficient), an insight appears
to tell them how much money they’ll spend during the summer keeping the home at this lower
temperature. If the away temperature is lower than the recommended setting, they are prompted
to try setting the temperature higher since the house will cool down to a comfortable setting
before they wake up.

Copyright 2012 by Opower and Honeywell. All rights reserved.



Installation

After submitting their temperature settings, the customer is randomly selected to be part of the
test or control group.

Please wait a moment while the system randomly
determines if your household has been selected to
participate in this program.

Just & momem

\\l/

”

If they are part of the control group, they will not receive a thermostat. Customers in the control
group may opt to sign up for a waiting list and may receive a thermostat if the program is
expanded.

We're sorry!
Because we're still in the trial phase of this program, we are unable to grant
participation to every household that qualifies

It's not personal Stay tuned
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If they are randomly selected into the test group, they will receive a thermostat and become part
of the program. Customers participating in the test group can schedule an appointment to have
their thermostat installed.

(v) Congratulations! The system has selected your
household to participate in this program.

Schedule your installation appointment below.
A quaified energy sechnician wil come 10 your home 10 Install your new thermostat free of charge
Choose your Installation date Choose a timesiot that works for you

544 PM . 06 44 PM
November 2012 . o y

Doal 56¢ 8n acoointment you tke?
Su Mo Tu We Th Fr Se Don see an appointment you ike

26 28

December 2012 >

Su Mo Tu We Th Fr Se

If none of the times available on the screen are convenient for the customer, they can click "Don't
see an appointment you like?" to see a phone number they can call to schedule the appointment
(1-888-660-5028).

To schedule an installation appointment over the phone please call 1-888-660-5028

Tuesday-Friday 11:30 AM to 8:00 PM PST and Saturday 8:00 AM to 5:00 PM PST

CLOSE
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Once they have selected the date and time for their appointment, they will see a confirmation
screen. This includes information on how to reschedule the appointment and where to download
the mobile application.

Congratulations!

0 App Store

Download the Opower App from the ITunes App Store

The customer will also receive an email confirmation for their appointment and a reminder to
install the mobile application in advance of the appointment.

We'll see you soon!
Your thermostat is scheduled to be installed on

Tuesday, November 06
05:44 PM - 06:44 PM

Don't forget to download the Opower mobile application prior to

your appointment

Download App

Mobile Application Tour

The mobile application tour can be launched at anytime, using the Opower mobile app on the
iPod Touches, and later on the customer’s smartphone. Click on the Settings tab, click “Launch
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tour,” slide through the tour pages, and click “Done” to exit. The tour provides an overview of
some of the main application functions and customer messages.

wil_Verizon 5:22 PM

="M i Verizon 2 -
Settings @ F |

Take a Tour @

Take a Tour

[ Launch tour
[ About Opower Let’s Get Started
Swipe through the following
p— screens to learn about the
[ Send application feedback features of this app.
[ Rate this app

+ or - to adjust the
current temperature

il Verizon 7 5:22 PM

Take a Tour ® Take a Tour @ Take a Tour ®

It's 71° at home. It will be 73° in
about 14 minutes.

Tap
to edit today’s
schedule

"I'm HOME

( until

- 11:00 PM

Take a Tour Take a Tour @

Opower
recommended
setpoint

Slide

to update where you are:
Away, Home or Asleep

Average Av_erage
setpoint of all [§ setpoint of the
thermostat most efficient
users 20% of users

Answering Customer FAQs

This section will help you answer customer questions about the program, mobile and Web
applications, and thermostat. A full set of customer FAQs can be found at
https://thermostat.opower.com/faq.
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What is this thermostat program?

Opower and Honeywell have partnered to create a smart thermostat solution, which allows utility
customers to program and monitor heating and cooling energy usage, not just from the thermostat
itself, but also via Internet-connected devices like smartphones. This solution also gives you the
ability to create optimal thermostat schedules that fit your lifestyle and provides customized
recommendations to help you trim your energy bills.

How can I save?

A programmable thermostat can help reduce your heating and cooling costs. You can save all
year long if you ensure your thermostat is set at the optimum program settings that match your
lifestyle. You can manipulate your temperature setting and conserve energy, even while you are
away, through the use of the Internet or your smartphone. Setting your programmable thermostat
to the highest comfortable temperature in the summer and lowest comfortable temperature in the
winter can help you reduce your energy bill.

What are the estimated savings based on?

The estimated costs and savings calculations are based on average heating and air conditioning
usage and utility billing rates in your area. These are only estimations and are not a guarantee of
savings from your utility company.

What other benefits does this program provide?

This thermostat program also benefits the community by helping to educate customers about
energy use and energy efficiency goals. The energy customers save will not only help the
environment, but also help reduce the need for new power plants and the occurrence of power
outages.

Are there any safety or privacy concerns I should be aware of related to this thermostat
program?

The Honeywell VisionPro thermostat used for this program was rigorously tested prior to being
installed in customers’ homes. These devices go through numerous quality control checks by
multiple parties, to ensure they meet a high level of customer safety, reliability, and satisfaction.

It is also our top priority to protect our customers' information. We apply the same privacy
protection standards to all data collected by the company from customers. We treat each
customer's personal information and data as confidential, consistent with all regulatory
requirements, including those established by the Public Utilities Commission. Therefore, be
assured that your information is kept private.

Can I get this device for my other properties and/or business?

The smart thermostat program is only available for residential use at this time. Only a single
thermostat is available for each program participant.

How many devices can I access the applications from?

Only a single wall-mounted thermostat is available for each program participant. You can install
and access the mobile application from as many smartphones as you would like, but the
application must be registered with the same username and password. Similarly, you can use the
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Web application from any supported web browser on any computer. If more than one member of
your household uses the application at the same time, the changes are preserved for the last
person who saves their changes.

Can people see if I am home or not?

No. We apply the same privacy protection to this data as other all other data collected by the
company for customers. The only way someone can see your status and schedule is if you give
them your login credentials to the web or smartphone application.

If I work from home or have a severe illness for which I have special temperature
needs, can I still benefit from this program?

You will always have control of your thermostat, so you can set safe and comfortable
temperatures that are suitable for your lifestyle. An easy way to save energy is to lower your
heating temperatures and raise your cooling temperatures when you are away. Depending on your
personal needs, you may also be able to use more efficient temperatures while you are asleep.

How safe is the program? Can anyone hack into the system?

It is our top priority to protect our customers' information. Our system employs industry-standard
defense mechanisms against brute-force attacks, code injection, and other malicious activity. We
apply the same privacy protection standards to all data collected by the company from customers.
We treat each customer's personal information and data as confidential, consistent with all
regulatory requirements, including those established by the Public Utilities Commission.
Therefore, be assured that your information is kept private.

What smartphones support the mobile application?

The mobile application is currently supported on the Apple iPhone 3GS or later, running 10S 4.3
or later, and Android phones running 2.2 or above. To locate your operating system on your
iPhone, open the Settings app, click on “About,” and see what “Version” your iPhone is running
(needs to be 4.3 or above). To locate your operating system on your Android, open the Settings
app, click on “About phone,” and see what “Android version” your phone is running (needs to be
2.2 or above).

How do I make a one-time change to my schedule?

You can use the “Thermostat” page of the mobile application or the “ My Thermostat” page of
the Web application to manually change your temperature, change your current state (away,
home, asleep), or set a new time to come home, wake, or go to sleep. On the thermostat on the
wall, you can also manually change your temperature.

How can I change my email address and/or password?

Open the Web application, and then select “My account” to change your password or email
address.

I now have three ways to change my thermostat. How are they different?

You can use your thermostat to manually change temperatures, turn on and off your heating and
AC, and control your fan. The Web application has the same functionality as the thermostat and
also allows you to register for an account, set a vacation schedule, and change your account
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settings, primary schedule, default temperatures, state (home, away, asleep), and schedule for
today. The mobile application has all of the functionality of the thermostat and Web application,
plus it allows you to compare your temperature settings, set a passcode, and set and receive
notifications.

Which browsers are supported for the Web application?

The current major release and previous major release of the four desktop browsers with the
largest market share are supported. Currently, this means Internet Explorer, Safari, Mozilla
Firefox, and Google Chrome are supported.

Will my house really be comfortable enough when I get home?

Yes. You just set the time you will return home and your thermostat does the rest. Your home
will be heated or cooled for you before you return home after being away or on vacation. Your
smart thermostat learns the amount of time it takes to heat or cool your house before you arrive,
based on the actual temperature in your home and past usage.

Can I enroll in the program using my smartphone?

You can only enroll in the program using the Web application. If you are selected for the
program, you will receive information about how to install the mobile application.
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